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We analyze the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered
doped quantum well strongly coupled to an optical cavity. The magnetic field changes the lineshape of the
intersubband optical transition due to the interface roughness of the quantum well from a Lorentzian to a
Gaussian one. In this regime, a novel form of magnetic-field-induced cavity protection sets in, which strongly
reduces the polariton linewidth to the cavity contribution only. Implications of our results for fundamental studies
of nonlinear polariton dynamics and for technological applications to polariton lasers are finally highlighted.
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I. INTRODUCTION

Strongly confined quasi two-dimensional (2D) electronic
systems have a long research history [1], and still remain un-
der the researchers’ spotlight due to their large importance for
both fundamental science and technological developments. In
recent years, 2D electronic systems supporting intersubband
(ISB) transitions polarized perpendicular to the quantum well
plane have been combined with good-quality electromagnetic
cavities giving rise to strong light-matter coupling effects and
opening the field of intersubband polaritons [2,3].

In particular, by adjusting the electronic density it is pos-
sible to vary the dipole moment of the ISB on a quite
broad range, bringing these polaritonic devices from the usual
strong-coupling regime to the more exotic ultrastrong cou-
pling (USC) regime. This regime was experimentally achieved
with ISB and other various solid-state platforms [4–7] and is
of great interest for its strongly modified ground-state prop-
erties [8–10]. More in general, the large flexibility of ISB
polaritons holds great promise for the study of a wide range
of cavity quantum electrodynamics (cQED) effects from both
a fundamental [8,11–13] and an applied perspective [14–16].
Despite the great achievements reached using ISB polaritonic
devices in both the midinfrared and THz regime, a serious
obstacle hindering a full development of this research program
is caused by the relatively large linewidth of the ISB transition
[17], mostly due to interface roughness of the semiconductor
quantum well nanostructures [18].

In this article we theoretically investigate a method to dra-
matically reduce the ISB polariton linewidth by suppressing
the contribution of interface roughness and bringing it down
to the cavity contribution only. The idea is to combine a
strong light-matter coupling to a single electromagnetic cavity
mode with a strong static magnetic field, so as to enter a
regime of cavity protection [19]. The strong perpendicular
magnetic field quenches the in-plane kinetic energy of the
electrons and strongly localizes them in the disorder potential
due to the interface roughness of the quantum well. As a

consequence, the line shape of the ISB transition changes
from a standard Lorentzian shape to an almost Gaussian one.
Due to the fast decay of the Gaussian tails, the strong coupling
to the cavity mode then effectively suppresses the inhomoge-
neous broadening of the ISB transition, leaving a polariton
linewidth, which is then only limited by the cavity compo-
nent. Differently from previous papers on cavity protection in
multi-quantum-well devices [20] and in various ensembles of
emitters in cavity-QED devices [21–26], the magnetic-field-
induced cavity protection mechanism predicted in our work
is based on the in-plane dynamics of electrons in a single
quantum well, which completely changes nature under the
effect of the strong magnetic field. Our calculations anticipate
a dramatic enhancement of the polariton quality factor, which
opens perspectives to experimental research in this field and
to technological applications.

The article is organized as follows. In Sec. II we introduce
the model used to describe ISB polaritons in the presence
of interface roughness in the quantum well and calculate the
cavity transmittivity in the strong coupling regime. In Sec. III
we characterise the impact of disorder on the ISB linewidth in
the absence of a surrounding cavity and we extend the known
results to the case of a strong perpendicular magnetic field.
In Sec. IV we translate the concept of cavity protection to
our context of ISB polaritons in strong magnetic field and
we show its implications: The main regimes are characterized
and experimental implementations are discussed. In Sec. V
we summarize the main results and conclusions of this paper.
Additional information on the derivations are given in the
Appendices.

II. MODEL

In this section we introduce the model to describe a planar
quantum well (QW) coupled to the electromagnetic field of
an optical cavity, as represented in Fig. 1(a). Electron motion
along the quantum well plane is typically affected by interface
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FIG. 1. (a) Sketch of the system. A semiconductor two-
dimensional quantum well is inserted in a metallic cavity. The
electric field of the cavity mode oscillates along the z direction,
perpendicular to the quantum well plane. The electronic intersubband
transitions in the quantum well give rise to an electronic polarization
directed along the same direction of the cavity electric field, realising
a strong light-matter coupling regime between the cavity and the
quantum well. [(b), (c)] Schematic view of the electronic subbands
in the disordered quantum well in absence/presence of the external
magnetic field perpendicular to the quantum well plane. The lowest
optically-active excitations are transitions between the lowest two
subbands due to the electrons below the Fermi energy EF . Differently
from the clean case, these transitions are not only fully vertical and
each electron can jump to different eigenstates of the upper subband.

roughness disorder, caused by the fabrication process. The
inclusion of this disorder forces us to go beyond the standard
theory of intersubband transitions based on the bosonization
of the collective ISB electronic excitations [27] and include
the underlying fermionic degrees of freedom. However, in the
small disorder, small excitation limit, it is still possible to
derive a sufficiently simple and manageable theory of light-
matter interactions with ISB transitions. This theory captures
well the effect of disorder and can be immediately extended
with the inclusion of a static external magnetic field orthogo-
nal to the QW.

A. Electronic states in a disordered quantum well in the
presence of a static magnetic field

We consider here an electronic system strongly confined in
the z direction and free in the (x, y) plane, in such a way to re-
alize a two dimensional quantum well (QW) with well-defined
energy subbands [28]. An homogeneous magnetic field with
amplitude B is pointing in the z direction, perpendicular to the
two dimensional QW. Assuming the symmetric gauge for the
magnetic vector potential, �A(�r) = B/2(−y, x, 0), the single
particle Hamiltonian for each electron reads

He = ( �p − e �A) 2

2m∗ + p2
z

2m∗ + U (z, �r), (1)

where �p = (px, py), �r = (x, y) are respectively the electron’s
in-plane momentum and position, m∗ is the electron effective
mass, e its charge and U (z, �r) is the single particle confin-

ing potential. Under the assumption of a strong confinement
on the z direction we can employ a Born-Oppenheimer-like
approximation between the different directions, and write the
single particle eigenfunctions as

ψ (z, �r) ≈ ζn(z, �r)ϕn k (�r), (2)

where the subband wavefunctions ζn(z, �r) are assumed to
depend only parametrically on the in-plane position �r and for
each �r solve the eigenproblem[

p2
z

2m∗ + U (z, �r)

]
ζn(z, �r) = εn(�r)ζn(z, �r) (3)

along the z direction. Here, n = 1, 2 . . . are integer numbers
and εn(�r) indicate the Born-Oppenheimer potential energy
interfaces.

For each subband n, the in-plane eigenfunctions ϕn k (�r) are
thus obtained by diagonalizing the in-plane Hamiltonian

Hn = ( �p − e �A) 2

2m∗ + εn(�r) (4)

and are labeled generically by the quantum number k (or array
of numbers). In the case of a clean QW with no magnetic field
�A = 0, and no spatial dependence of the potential interfaces
εn(�r) = εn, this index is actually a pair of numbers repre-
senting the wavevector of the planewave basis. In spatially
inhomogeneous configurations, where translational invariance
is broken and εn(�r) depends on the position, planewaves are
no longer eigenstates of the system. In this case the index k
represent a generic quantum number labeling the true eigen-
states of the system, extracted by exactly diagonalizing the
full Hamiltonian.

We assume now that the z confinement is characterized
by a single-length scale Lz = Lz(�r), which depends on the
in-plane position �r, and that the potential energy interface
depends from the in-plane position only through this char-
acteristic length εn(�r) = εn(Lz(�r)). Moreover we assume that
Lz(�r) is given by a fixed length over the whole plane plus a
small fluctuating part Lz(�r) = Lqw + δL(�r), which describes
the roughness of the QW interface. Expanding the potential
energy interface at the first order in δL we arrive to the final
expression of the in-plane electronic Hamiltonian of each
subband as Hn ≈ H‖

n + ε
qw
n , where the in-plane electronic

Hamiltonian is given by

H‖
n = ( �p − e �A) 2

2m∗ + δUn(�r), (5)

ε
qw
n = εn(Lqw) is the energy of the n subband of the clean

QW, and δUn(�r) = ∂Lεn(Lz ) · δL(�r) is the position-dependent
energy shift due to the disorder.

The effect of the external magnetic field B on the energy
distribution of the in-plane eigenstates is sketched in Figs. 1(b)
and 1(c): when the cyclotron frequency ωB = eB/m∗ is larger
than the typical energy width of each potential energy inter-
face δUn, the electronic dispersion of each subband changes
from the usual parabola to discrete Landau levels.

In our description we completely neglect the effect of
electron-electron interactions. These are known to have a
small effect in the ISB optical linewidth [29], which is mainly
limited by the interface roughness [18,30,31]. For this reason,
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we chose to avoid further complications and focus on the
single particle dynamics only, so to highlight in the most
transparent way the interplay between roughness disorder and
magnetic field. Including the effect of Coulomb interactions in
our description of the in-plane electron dynamics goes beyond
the scope of this paper and is left for a future work.

In spite of this, it must be kept in mind that the effect
of electron-electron interactions is still present in the pres-
ence of magnetic field [32,33] and, in particular, the effect
of Coulomb interactions onto the electron motion along the
z axis is completely unaffected by the magnetic field along
z. As such, it keeps giving an important contribution to the
nonlinearity of the ISB response to strong electromagnetic
fields [34]. This implies that our results are directly applicable
to the on-going quest of developing ISB polaritonic devices
with strong optical nonlinearities and polariton lasers, where a
reduced polariton linewidth can be a game-changing improve-
ment [11].

B. Intersubband transitions and cavity polaritons

After having characterized the single-particle eigenstates
of electrons, we consider here that the two dimensional QW
is placed inside a cavity enclosed within a pair of metallic
plates parallel to the QW (x, y) plane, as represented in Fig. 1.
We assume that the electronic ISB transitions mostly couple
to a single TM-polarized cavity mode, which, in the long-
wavelength approximation, can be taken to be homogeneous
along the plane, with frequency ωc and zero-field amplitude
E0 = √

h̄ωc/(2ε0V ) directed in the z direction and determined
by the cavity volume V .

The light-matter Hamiltonian is then given by the dipole-
gauge Hamiltonian [27],

Hint ≈
∫

dzd2r �P(�r, z) · �Ecav(�r, z), (6)

where �P is the electronic polarization of the QW and �Ecav ≈
�uzE0(a + a†) is the electric field of the cavity. Assuming we
are below the ultrastrong light-matter coupling regime, we can
for simplicity discard the ∼ �P2 term [35,36]. Under this as-
sumptions we can also neglect higher-order boundary effects,
such as the presence of image charges on the plates, which
are only manifested in the ultrastrong coupling regime and
they only provided a renormalization of the overall frequency
scales [35,37]. In this respect we can argue that the thick-
ness of the cavity and the distance between the QW and the
metallic plates does not really play any role. This is specially
the case of cavities used for ISB polaritons where the field
is mostly homogeneous along the growth direction [38]. For
these reasons the size of the cavity will not enter as a physical
parameter in our description.

Introducing the creation/annihilation spinless electronic
operators 
(�r, z), satisfying the Fermionic anticommu-
tation relation {
(�r, z)†, 
(�r ′, z′)} = δ(z − z′)δ(2)(�r − �r ′)
we can rewrite the electronic polarization as �P(�r, z) ≈
ez
†(�r, z)
(�r, z)�uz [27], where e is the electron charge.
The second quantized light-matter coupled Hamiltonian

reads

Htot = h̄ωca†a +
∫

dz d2r 
†(�r, z)He
(�r, z)

+ e
∫

dz d2r z
†(�r, z)
(�r, z) · E0(a + a†). (7)

Restricting ourselves to QWs with a fixed number of electrons
Ne, we define the plasma frequency of the electronic transi-
tions as

ωP =
√

e2

ε0m∗
Ne

V
. (8)

The lowest QW intersubband frequency transition and its z-
direction oscillator strength are defined as

h̄ωqw = ε
qw
2 − ε

qw
1 fqw = 2m∗ωqwz2

21

h̄
, (9)

in terms of the dipole matrix element z2
n n′ = |〈ζn|z|ζn′ 〉|2

between the n, n′ single particle eigenfunctions defined in
Eq. (2). To avoid complications stemming from the implicit
parametric dependence of the matrix elements zn n′ ∼ Lqw +
δL(�r) on the in-plane position �r, we consider an average value
z2

n n′ over the (x, y) plane, neglecting its dependence on the
fluctuating QW thickness. This assumption is well justified
within the weak disorder assumption and corrections are of
higher order in δL(�r).

We then reexpress the electron field operator in
terms of the single particle eigenfunctions 
(�r, z) =∑

n k ζn(z, �r)ϕn k (�r)cn k , where the creation operators cn k la-
beled by the subband n and in-plane k indices satisfy
Fermionic commutation rules {cn k, c†

n′ k′ } = δn,n′δk,k′ . Within a
rotating wave approximation, we neglect the counter-rotating
terms in the light-matter interaction and we restrict our atten-
tion to the lowest intersubband transition between n = 1 and
n = 2. In this way, we obtain the cavity-plasma Hamiltonian

Htot ≈ h̄ωca†a +
∑

n=1,2 k

(
εqw

n + h̄ω‖
n(k)

)
c†

n kcn k

+ h̄�R

2

⎛
⎝a ·

∑
k,k′

�k k′c†
2 kc1 k′ + H.c.

⎞
⎠, (10)

where the strength of the light-matter coupling is quantified
by the Rabi frequency

�R = ωP

√
fqw

ωc

ωqw
. (11)

Here, ω‖
n(k) are the eigenfrequencies of H‖

n as defined in
Eq. (5) and the k, k′ transition matrix element is given by
the in-plane wavefunction overlap between states in the two
different subbands

�k k′ = 〈ϕ2 k|ϕ1 k′ 〉√
Ne

. (12)

Note that the use of the dipole gauge allows us to truncate the
Hilbert space to the two lowest subbands without introducing
potentially dangerous spurious effects [39].
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C. Cavity transmission and quantum well optical density

Assuming that the cavity is resonant with the lowest QW
intersubband transition ωc ∼ ωqw, we can use the cavity-
plasma Hamiltonian in Eq. (10) to derive the input-output
equations for the system [40] and then the cavity optical trans-
mission of a weak probe of frequency ω at normal incidence
(see Appendix A for further details on the derivation),

Tc(ω) = − γc/2

ω − ωc + i γc

2 + �2
R

4 χqw(ω)
, (13)

where γc is the cavity loss rate and microscopic details of the
QW are summarized by the optical response

χqw(ω) = −
∑

k′�k′
F ,k

|�k,k′ |2
ω − ωqw − ω

‖
k k′ + iκ

. (14)

Here ω
‖
k k′ + ωqw = ω

‖
2(k) − ω

‖
1(k′) + ωqw is the frequency of

the (1, k′) → (2, k) transition, κ is a small phenomenological
energy loss rate introduced to regularize the response, and the
sum over initial states k′ is restricted to the occupied states
below the Fermi level k′

F of the lowest subband.
Using the Sokhatsky identity limκ→0 Im[1/(ω + iκ )] =

−πδ(ω) we can introduce the so-called QW optical density

ρqw(ω) = lim
κ→0

1

π
Im[χqw(ω)]

=
∑

k′�k′
F ,k

|�k,k′ |2δ(ω − ωqw − ω
‖
k k′ ). (15)

This quantity is normalized to one
∫

dω ρqw(ω) = 1, as can
be verified by considering that 1 = ∑

k |ϕn k〉〈ϕn k| and using
again the Sokhatsky identity, and is equivalent to the density
of states typically used in the literature [41], which is de-
rived from the electronic Green’s function, as it is shown in
Appendix B. The QW optical response can be rewritten only
in terms of the optical spectral density as

χqw(ω) = −
∫

dω′ ρqw(ω′)
ω − ω′ + iκ

, (16)

making this quantity the central object of our investigation.

III. LINEWIDTH BROADENING DUE
TO ROUGHNESS DISORDER

To understand the behavior of the cavity transmission
Tc(ω) in the different regime, we first need a clear under-
standing of the QW optical response χqw(ω), which represents
the optical susceptibility of the QW to an external probe with
incident frequency ω. This reduces to study how the optical
density ρqw(ω) is modified by the disorder and the external
magnetic field.

In a clean sample, or when the disorder is exactly the same
in the two subbands the transition matrix is �k k′ = δk k′ and
all transition frequencies coincide, so to have ω

‖
k k′ = 0. From

Eq. (15), it then follows that the QW optical density is a delta
function centered at the QW frequency ρqw(ω) ∼ δ(ω − ωqw).

In this section we will examine how this picture is de-
stroyed by the disorder and, successively, what is the interplay
between disorder and magnetic field. To be concrete we keep
the discussion in the simple, paradigmatic, example of the QW

with infinite well confinement. However, in order to make our
results general and independent from the precise shape of the
confining potential in the z direction, we will introduce a set
of natural units to express all the quantities in adimensional
form. In this way all the results of this section applies as
well to any other type of z confinement after providing the
appropriate rescaling of variables.

A. Simple model for the interface roughness disorder

When the system is instead affected by the interface
roughness giving a different disorder potential δUn for each
subband, several k′ → k transitions contribute to the QW opti-
cal density ρqw(ω) and, in the large-system limit, this becomes
a smooth continuous distribution, broadened around ωqw, with
a Lorentzian linewidth �qw. The quality factor of the QW ISB
transition is then given by Qqw = ωqw/�qw.

Specifically, we focus here on the case of an infinite well
(or square box) confinement in the z direction. In this way we
have that

εn(L) = h̄2(πn)2

2mL2
. (17)

We also introduce a reference length scale that depends only
from the QW effective electron mass and central frequency

lqw =
√

h̄

m∗ωqw
. (18)

In the case of an infinite well with length Lqw, where the
central frequency is given by the lowest transition lqw =√

2/3Lqw/π ≈ Lqw/4. From now on we will give all the
lengths in units of this length scale.

For simplicity, we specialise on the case of a Gaussian-
distributed interface roughness, for which δL(�r) = 0, and
δL(�r)δL(�r ′ ) = ξ 2

0 /(2π ) exp[−|�r − �r ′ |2/ξ 2
c ]. Here the over-

line bar indicates the disorder average and ξ0 is the roughness
amplitude, while ξc is its correlation length. We can then
define a dimensionless parameter, which controls the disorder
amplitude also in the general case of an arbitrary confinement
and an arbitrary disorder roughness

ηdis = |∂Lε1(Lqw)|ξ0

h̄ωqw
=

(
2

3

)3/2
ξ0

π lqw
≈ 1

6

ξ0

lqw
, (19)

where the last equality holds for the specific case of the infinite
square box potential (see Appendix C for major details). The
disorder potential for each subband n reads

δUn(�r)/ωqw = n2ηdis�(�r), (20)

where �(�r) = δL(�r)/ξ0. In Fig. 2(a) an example of the disor-
der potential is reported together with its Fourier transform in
Fig. 2(b). Here the parameter’s choice is inspired by the typ-
ical values found in GaAs/AlGaAs systems; see for instance
[18].

It is worth to highlight that the use of energy, length units
and disorder amplitude in terms of h̄ωqw, lqw and ηdis (as de-
tailed in the Appendix C) is important to keep our description
as general as possible and to make it independent from the
specific shape of the confining QW potential in the direction
of the ISB transition (z direction). For instance, the use of
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FIG. 2. (a) Spatial profile of a single realization of the disorder
potential δUn(�r) for the n = 1 subband. (b) Fourier transform of the
same disorder potential δŨn(�k) as a function of the wavenumber �k.
Disorder parameters: ηdis ≈ 0.06, ξc/lqw = √

2. The numerical meth-
ods and the integration parameters are discussed in the Appendix C.

these units makes the application to harmonic z-confinement
case straightforward. The only difference is in how the re-
sults are reparametrized in the disorder ξ0 and correlation
ξc lengths. Specifically, we will have that ηdis = 2ξ0/lqw and
δUn(�r)/ωqw = n ηdis�(�r). Notice the more favourable scaling
of the harmonic confinement ∼n.

B. Intersubband linewidth at B = 0

In the absence of magnetic field, B = 0, the QW optical
density is approximatively given by a Lorentzian distribution
[41,42],

ρqw(ω) ≈ 1

2π

�qw

(ω − ωqw)2 + �2
qw/4

, (21)

where �qw is its full width at half maximum (FWHM).
This behavior is confirmed looking at Fig. 3(a), but we

also notice some additional features. The long tails of the
distribution decay somehow faster than a proper Lorentzian;
moreover, the optical density ρqw(ω) is not completely sym-
metric and its asymmetry can be increased or reduced by
changing the Fermi energy EF ; see Fig. 3(b). In particular
reducing the Fermi energy reduces the extension of the low-
energy tail (on the left side of the peak). All these effects
can be understood considering that the left tail is due to the
electrons that jump to an energy level of the second subband,
which has lower energy than their initial level, so to have
ω

‖
k k′ < 0. Assuming the Fermi energy larger than the disorder

FIG. 3. (a) Optical density ρqw(ω) (blue-solid line) and
Lorentzian fit (black-dashed line). (b) Optical density ρqw(ω) cal-
culated for increasing values of the Fermi energy EF . Disorder
parameters: ηdis ≈ 0.06, ξc/lqw = √

2. In (a) the Fermi energy is
fixed to EF /h̄ωqw ≈ 0.6, while in (b) a range of values is used as
indicated in the legend.

FIG. 4. (a) Plot of the FWHM �qw of the ISB optical density ρqw

as a function of the disorder strength ηdis (blue-solid dots). (b) Plot
of �qw as a function of the disorder correlation strength ξc. Disorder
parameters: ξc/lqw = 0.5 [in panel (a)], ηdis = 0.4 [in panel (b)].
Fermi energy EF /h̄ωqw ≈ 0.5. In both panels, the red-dashed line is
the Unuma linewidth given by Eq. (23). To numerically implement
Eq. (15) we used a finite-width delta function, with small linewidth
γδ/ωqw ≈ 0.002, which is then subtracted from the numerical data.

energy scale, we have that the lowest value of the in-plane
electronic transition is approximately given by the Fermi en-
ergy [ωqw + ω

‖
k k′]min ≈ ωqw − EF /h̄. On contrary the value of

the Fermi energy has no influence on the tail on the right side
of the peak, since the electrons have no limitation in jumping
toward higher energies.

As we can see from Fig. 4, the FWHM �qw scales quadrati-
cally both in the disorder strength and in the correlation length
[18,41,43]

�qw/ωqw ∼ η2
dis, ξ 2

c /l2
qw, (22)

as long as the Fermi length is much longer than the disorder
correlation length ξckF � 1.

Following the semianalytical approach developed in [18]
by Unuma et al., it is possible to derive an analytic expression
for the ISB linewidth, which holds in the zero-energy limit of
the electronic scattering against the disorder

�qw, U

ωqw
≈ 9

2

ξ 2
c

l2
qw

η2
dis. (23)

As we can see from Fig. 4 this formula, that we call Unuma
linewidth, fits very well the ISB linewidth extracted from the
numerical simulations in the regime of small ξckF � 1.

C. Intersubband linewidth at B �= 0

When the magnetic field is turned on, B 
= 0, the situ-
ation changes drastically. In particular when the cyclotron
frequency ωB = eB/m∗ exceeds the energy scale of disor-
der ωdis = ωqwηdisξc/lqw we can no longer think about the
electrons in terms of free particles diffusing in a disordered
landscape, but instead we need to switch to a description in
terms of Landau levels. Having this in mind we can define a
reference magnetic field that approximatively sets the border
of this transition

B0 = ηdis
m∗ωqw

e

ξc

lqw
= ηdis

ξc

lqw

h̄ωqw

2μ∗
B

. (24)

Here, μ∗
B = eh̄/(2m∗) is the effective Bohr magneton relative

to the effective mass m∗ of the electron. In the rest of the arti-
cle we will give all magnetic fields expressed in this rescaled
unit. In the last part we will give a more precise analysis on
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FIG. 5. (a) Plots of the optical density ρqw(ω) for increasing
values of the magnetic field B/B0 = 1, 4.5, 7 (red-solid lines). Blue
lines show the same quantity in the absence of magnetic field. Dis-
order parameters: ηdis = 2/15 ≈ 0.13, ξc/lqw = 0.5. Fermi energy
EF /h̄ωqw = 0.5. For this choice, the quality factor of the intersub-
band transition in the absence of magnetic field is numerically found
to be Qqw ≈ 40. (b) Plots of the optical density ρqw(ω) with fixed
magnetic field B/B0 = 2.5 for increasing values of the Fermi en-
ergy EF = 0, ωB, 2ωB. Here the lowest Landau level is set to be at
zero energy, such that the Fermi energy falls in the middle of the
disorder-broadened �1 = 0, 1, 2 Landau level. The vertical-dashed
line highlights the asymmetry of the central Gaussian. Disorder
parameters: ηdis = 0.08, ξc/lqw = 1.

the quantitative conditions to achieve the regime of cavity
protection.

For a completely filled Landau level, the Lorentzian optical
density is broken into a series of equispaced Gaussian peaks,
as we can see from Fig. 5(a). The central peak represents all
transitions from a given Landau level �1 below the Fermi en-
ergy in the first subband, to the same respective Landau level
in the second subband, �1 = �2. The side peaks represent in-
stead transitions to other Landau levels of the upper subband,
�2 
= �1. For partially filled bands, the peaks corresponding
to transitions starting from the uppermost populated Landau
level become asymmetric, yet with no qualitative consequence
on the overall conclusions of our study. In Fig. 5(b) we plot the
optical density with fixed magnetic field when the Fermi en-
ergy falls in the middle of the zeroth/first/second broadened
Landau level, EF = 0, ωB, 2ωB. We see that the asymmetry
is more prominent when the Fermi energy is in the lowest
Landau level, and then is progressively washed out when EF

is in the higher Landau levels.
The spectral distance between neighboring Gaussian is

approximately given by the cyclotron frequency, ∼ωB, as a
consequence of the transitions between neighboring Landau
levels. Focusing on the properties of the central Gaussian,
centered on ωqw, we call its linewidth �B. Contrary to the
nonmagnetic case, discussed in the previous section, here we
expect that the linewidth of each of these Gaussian lobes
scales linearly with the disorder strength �B/ωqw ∼ ηdis. This
can be understood from the fact that the disorder plays the
role of a small perturbation on a degenerate system, bringing

corrections at the linear order instead of the usual second
order.

As in the nonmagnetic case, the disorder correlation length
ξc plays an important role in determining the width of each
Gaussian, but in contrast to the nonmagnetic case, here the
system has an intrinsic length scale, given by the magnetic
length

lB =
√

h̄

eB
. (25)

We then expect that the FWHM of each Gaussian depends
nontrivially on ξc/lB.

Our aim is now to have more quantitative insights on
the dependence between the width of the Gaussian lobes
and the system parameters. In order to do so we start from
the observation that not all the transitions are important in
this regime of strong magnetic field. Indeed, considering the
central Gaussian lobe of the optical density, we realize that
only the intra-Landau-level transitions with the same kn are
actually relevant. This is justified by the fact that the disorder
landscape is the same in the two subbands, and differs only in
its amplitude. Specifically, in the second subband it is 4 times
larger than in the first subband. The system is then strongly
localized but each state in the ground subband can overlap
only with the state in the upper subband localized in the same
region. So, in Eq. (15), we can approximate �(�1k1 ),(�2,k2 ) ≈
δ�1�2δk1k2 . The energy difference of each transition from a state
(�1, k1) in the first subband to the corresponding state (�2, k2)
in the second subband is then given by ωqw + ω

‖
(�2k2 )(�1k1 ) ≈

ωqw + 3(ω�1k1 − ωB�1), where ω�1k1 is the k1th eigenenergy
of the �1th Landau level of the first subband.

The considerations above are particularly important when
we restrict each band to only include the lowest Landau
level (LLL). This is well justified when the Fermi energy
is smaller than the cyclotron frequency, EF < h̄ωB, and it
is a crucial assumption in order to carry on the calculation
analytically. However, we will see that the result extracted
in the LLL remains a very good approximation also in the
more general case. Calling the linewidth of the LLL �LLL

we arrive to conclude that the linewidth of the optical den-
sity is approximately three times the linewidth of the first
subband LLL, �B ≈ 3 �LLL. In [44] we can find an exact
expression for �LLL extracted from the density of states of
a noninteracting two-dimensional electron gas in presence of
a Gaussian-correlated random potential in the limit of large
correlation length ξc/lB � 1 (a very similar result can be
derived also for the case of Gaussianly distributed short-range
scatters, see [41,45,46]). A brief summary of the calculation
is reported in the Appendix D. Since the resulting density of
state is Gaussian, the FWHM reads

�LLL

ωqw
= 2

√
log(2)

π

ξc/lB√
ξ 2

c /l2
B + 2

ηdis. (26)

The FWHM of the central Gaussian peak of the ISB optical
density is thus given by

�B, H

ωqw
≈ 6

√
log(2)

π

ξc/lB√
ξ 2

c /l2
B + 2

ηdis. (27)
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FIG. 6. (a) Gaussian linewidth (FWHM) �B of the central peak of the optical density as a function of the disorder strength ηdis for a constant
value of the magnetic field B. The red squares/green dots are the numerical data corresponding to increasing values of B, that is B/B̃0 = 0.2,
B/B̃0 = 0.6. The disorderless reference magnetic field is defined as B̃0 = h̄ωqw/(2μ∗

B ). The red/green dashed lines are given by the Hikami
linewidth �B, H/ωqw while the black-solid line is the Unuma linewidth �qw, U/ωqw. Disorder parameters: ξc/lqw = 0.5. (b) Gaussian linewidth
�B (purple dots) extracted from numerical simulations of the optical density as a function of the magnetic field B. The dashed-red line is
given by the Hikami linewidth �B, H/ωqw, while the dashed-dotted line is given by the small disorder expansion of the Hikami linewidth �

(1)
B, H.

Disorder parameters as in Fig. 5: ηdis = 2/15 ≈ 0.13 and ξc/lqw = 0.5. (c) Same plot as in (b) but with different parameters in order to highlight
the saturation of the linewidth at high magnetic field. The red-dashed line is given by the Hikami-linewidth �B, H/ωqw. The purple-dotted line is
the saturation value of the Hikami linewidth given by �∞

B, H/ωqw ≈ 0.094. Disorder parameters: ηdis = 1/30 ≈ 0.03 and ξc/lqw = 4. In all plots
the Fermi energy is EF = 1.5h̄ωB, in such a way that the central Gaussian is determined by only the two lowest Landau levels. To numerically
implement Eq. (15) we used a finite-width delta function, with small linewidth γδ/ωqw ≈ 0.003, which is subtracted from the numerical data.

This formula, that we call Hikami linewidth, fits extremely
well the optical density’s FWHM extracted numerically as we
can see from Fig. 6, even in the case in which higher Landau
level contribute to the optical density.

As expected the width of the central Gaussian scales lin-
early with the disorder strength ∼ηdis, which is is perfectly
captured from Eq. (27), see Fig. 6(a). In this plot we also
included the corresponding values from the Unuma linewidth
�qw, U from Eq. (23), which gives an estimate of the ISB
linewidth without the magnetic field. It is worth noticing
that at this stage the effect of the magnetic field is actually
to broaden the ISB transitions and so to worsen the quality
factor of our bare QW. In the next section we will see that an
opposite result occurs when the QW is embedded in a cavity.

For small values of the magnetic field we also found a lin-
ear scaling for the width in ∼ξc/lB, which means a square-root
scaling in the magnetic field intensity ∼√

B, as can be seen
from Fig. 6(b). Quite surprisingly we realize that the Hikami
formula gives an accurate estimation of the linewidth even
in this regime of moderate correlation length, where ξc � lB.
Expanding it at lowest order in ξc/lB we recover the square-
root behavior in the magnetic field strength. Using Eq. (23)
we can reexpress the small disorder expansion of the Hikami
linewidth in a nice and compact expression

�B, H

ωqw
≈ �

(1)
B, H

ωqw
= 2

√
log(2)

π

√
2μ∗

BB

h̄ωqw

√
�qw U

ωqw
. (28)

In Fig. 6(b) we see that both Eqs. (27) and (28) fits very well
the numerical data in our regime of interest. It is worth notic-
ing once again the broadening effect of the magnetic field,
by comparing the Hikami linewidth to the Unuma linewidth
�

(1)
B, H/�qw, U = 2

√
log(2)/π

√
ωB/ωqw

√
Qqw. Even if the typ-

ical magnetic field that we are using throughout this paper is
such that ωB/ωqw ∼ 0.1−0.5, the ISB quality factor is always

taken to be Qqw � 10, in order to fulfill the condition of small
disorder, and so �

(1)
B, H/�qw, U � 1.

In Fig. 6(c) instead the behavior at larger values of ξc/lB
is reported, and we see how the linewidth saturates for large
magnetic field, approaching the asymptotic value

�∞
B H

ωqw
≈ 6

√
log(2)

π
ηdis. (29)

D. Discussion

As we have seen in the previous discussion, there is a large
difference in the optical properties of the ISB QW between
the nonmagnetic and the strong magnetic case. In particular
the magnetic field turns the shape of the optical density from a
Lorentzian to a Gaussian (a central Gaussian separated from a
series of smaller Gaussian side lobes), and sensibly broadens
the ISB transition. These differences can be traced back to
the localization properties of the electrons in the disordered
potential due to the interface roughness.

Without the magnetic field the electronic states are partially
localized due to the interplay of multiple scattering and inter-
ference processes on the complex landscape of the disorder
potential. The Lorentzian shape of the optical density can be
then understood in terms of the finite effective lifetime that the
scattering on disorder gives to the electronic coherence.

When the magnetic field is turned on the kinetic energy is
completely quenched and we switch to a new regime of strong
spatial localization in Landau levels, where the localization
length is set by the magnetic length lB. In Fig. 7 we can
see an example how eigenfunctions at similar eigenenergies
localize in a very different way in the two cases. An alter-
native, possibly more intuitive understanding of this physics
can be obtained within a semiclassical picture: In the strong
magnetic field regime with lB � ξc, the electrons follow the
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FIG. 7. Illustrative examples of the real-space wavefunction of a
n = 1 subband eigenstate in the presence of disorder in the B = 0
(left) and B/B0 = 0.5 (right) cases. These eigenstates are obtained
via exact diagonalization, as detailed in Appendix C, of a square sys-
tem with lateral size Lx,y/lqw = 14. Other parameters: EF /(h̄ωqw) =
0.5, ηdis ≈ 0.03, ξc/lqw ≈ 4.

semiclassical guiding center trajectories along the equipoten-
tial lines of the disorder of each subband [47]. Their energy
levels are approximately given by h̄ω� k ∼ h̄ωB� + δU (�rk ),
where for each value of the quantum number k labeling the
states, one has to pick a different representative real-space
position �rk along the orbit. Since according to (20) the disorder
potential felt by the two subbands are proportional to each
other, the electronic transitions are only between states with
the same localization pattern (as described in the last section)
and their frequencies are effectively sampling the values of
the disorder potential, which follows a Gaussian distribution.
This gives a basic intuitive explanation why the resulting
optical density is Gaussian-distributed with a linewidth set
by the width of the disorder potential. Despite the much
larger linewidth, it is the much faster decay of the tails of the
Gaussian distribution compared to the ones of a Lorentzian
distribution, which will be at the heart of our developments in
the next sections.

IV. INTERSUBBAND POLARITONS
AND CAVITY PROTECTION

In this section we show how the dramatic change in the
shape of the QW optical density ρqw(ω) due to the magnetic
field that was displayed in Fig. 5 can be used to sensibly
improve the properties of the ISB cavity polaritons. It is in
fact a well-known fact that a sufficiently strong coupling of a
collection of emitters with an overall Gaussian optical density
to a single-mode cavity may give rise to polaritonic peaks
whose linewidth is only limited by the cavity losses [19]. On
contrary, the linewidth of the polariton peaks resulting from
an emitter with a Lorentzian-shaped optical density is set by
the average of the cavity and emitter linewidths. The physical
mechanism underlying these two different behaviours goes
under the name of cavity protection [21,22], and is a general
feature of polaritonic systems independently of their material
realization [20,23–26].

A. Magnetic-field-induced cavity protection

We consider here the case in which the magnetic field is
strong and exceeds the disorder strength, B > B0. Since in
a clean sample the polariton frequencies are given by ω± =

ωc ± �R/2, when the Rabi frequency becomes comparable
with the cyclotron frequency �R ∼ ωB, the polariton modes
sit in between a pair of Gaussian peaks of the optical density.
Here, the optical density has a much smaller value than in the
standard nonmagnetic case, ρqw(ω±)|B 
=0 � ρqw(ω±)|B=0. If
we think of the system in terms of the clean polariton eigen-
states coupled to another continuum of states given by the
disorder, we can apply the standard Weisskopf-Wigner theory,
expecting that the polaritonic linewidth �± is proportional to
the optical density calculated at the polariton frequency, �± ∼
ρqw(ω±). If the optical density drops in correspondence of the
polariton frequencies a strong linewidth-narrowing effect is
expected.

This behavior is indeed clearly visible in the numerical
results shown in Fig. 8, where we plot the cavity transmission
Tc(ω) defined in Eq. (13) as a function of the transmitted
frequency ω and the Rabi frequency �R. It is clear that, for a
sufficiently large value of B/B0 and for a Rabi frequency com-
parable to the cyclotron frequency �R ≈ ωB, the polaritonic
transmission linewidth is several order of magnitude smaller
than the B = 0 case and is only limited by the cavity linewidth.

A further increase of �R makes the polaritonic transmis-
sion to broaden again as in the weak Rabi frequency case.
This happens specifically when the polariton frequencies cor-
respond to one of the side Gaussians of the optical density,
that is for �R ∼ 2n · ωB, with n = 1, 2 . . .. This behavior is
well captured following the theory developed by Diniz et al.
[22], where the polaritonic linewidth can be estimated using
the following formula:

�± ≈ 1

2

[
γc + π

2
�2

Rρqw

(
ωc ± �R

2

)]
, (30)

where γc is the cavity linewidth. This formula holds in the
strong coupling regime, when �R � γc, �qw (see Appendix E
for more details). Having �R > γc, �qw means that the polari-
tonic linewidth �± is determined by the shape of the tails of
the QW optical density. If ρqw has a Lorentzian shape, as in
the regular nonmagnetic case, we have that π/2 �2

Rρqw(ωc ±
�R/2) ≈ �qw and the resulting polaritonic linewidth is the
average between the cavity and ISB linewidths, �± ≈ (γc +
�qw)/2. On contrary, if the QW optical density has a Gaussian
shape (or, more generally, decays faster than 1/ω2), we have
that π/2 �2

Rρqw(ωc ± �R/2) ≈ 0 and the resulting polaritonic
linewidth is only given by the contribution due to the cavity
linewidth �± ≈ γc/2.

In Fig. 9(a) we plot the result of (30) in the two cases
of B = 0 and B ≈ 4.5 B0. When the vacuum Rabi coupling
�R is comparable to the QW linewidth �qw the polaritonic
peaks have similar linewidth in both the nonmagnetic and
magnetic cases, Fig. 9(b) left panel. Instead, when the strong
coupling regime is fully reached the mechanism behind the
cavity protection sets in: the contribution of the ISB transition
to the polariton linewidth drops to zero, as shown in Fig 9(a),
and the linewidth is only given by half the cavity linewidth.
In Fig. 9(b) central panel, we illustrate the cavity protection
effect for a cavity quality factor Qc ≈ 150 close to the typical
experimental values. However, as pointed out at the beginning
of the section, this is true only when the polariton frequency is
located in a gap between two Gaussian peaks, i.e., when �R ∼
ωB: when the polariton frequency reaches the next Gaussian
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FIG. 8. Logarithmic colorplot of the cavity transmission as a function of the Rabi coupling �R and the external incident frequency ω for
various values of the magnetic field B in the resonant regime ωc = ωqw. Disorder parameters as in Fig. 5: ηdis = 2/15 ≈ 0.13, ξc/lqw = 0.5.
Fermi energy EF /h̄ωqw = 0.5.The ISB quality factor (without cavity) in the three panels is numerically found to be Qqw ≈ 40, 12, 10, from
left to right. An extreme value of the cavity quality factor Qc = 105 is taken for illustrative purposes, more realistic values will be considered
in the next figures. In physical units, for a QW of thickness Lz = 26 nm and m∗ ≈ 0.067 me, these adimensional parameters correspond to
h̄ωqw ≈ 25 meV and a reference magnetic field B0 ≈ 1 T. In the central panel we thus have B ≈ 4.4 T while in the right panel B ≈ 6.9 T.

peak, at �R = 2ωB the linewidth is again broadened to its
nonprotected value, see the right panel of Fig. 9(b).

In Fig. 9(c) we plot the quality factors of the lower and
upper polaritons defined as

Q± = ω±
�±

, (31)

as a function of the Rabi frequency, in the presence and in
the absence of the magnetic field. As in the other plots of
Fig 9, we set ωc = ωqw, we take the cavity quality factor as
Qc = ωc/γc = 150 and, when it is on, the magnetic field is
set to B/B0 = 4.5. We extract numerically the polaritonic fre-
quencies ω± and the linewidths �± as, respectively, the peak
frequencies of the cavity transmission Tc(ω), and the FWHM
of each peak. When the magnetic field is on, the polaritonic
quality factor increases sensibly [the light and dark-solid lines
in Fig. 9(c)], reaching its limiting value

Q± max = 2
ωc ± �R/2

γc
, (32)

marked by the light and dark red-dashed lines. For instance,
when �R/ωqw ≈ 0.3 we have that the polaritonic quality fac-
tors increase by a factor between 3 and 4. Of course, the
improvement factor would be far more dramatic for higher
values of the cavity quality factors Qc as shown in Fig. 8. Such
improvements are presently the subject of intense research
[48–51].

Moreover, we have to notice that even in the absence
of magnetic field both lower and upper polaritonic quality
factors Q± might display a slight increase as a function
of the Rabi frequency �R [light and dark blue-solid lines
in Fig. 9(c)]. This is a side effect due to the nonperfectly
Lorentzian and asymmetric shape of the QW optical density
ρqw(ω). However, this is a rather marginal effect if compared
to the dramatic linewidth suppression that is induced by the
magnetic field.

As a final point we investigate the behavior of the cavity
transmission Tc(ω) as a function of the external magnetic field
B, keeping the Rabi frequency �R constant. In Figs. 10(a) and
10(b) we respectively choose �R/ωqw = 0.15 and �R/ωqw =

0.4 and we sweep the magnetic field in the range B/B0 ≈
0.5 − 5. In order to have a better readability of the figure, the
magnetic-field-dependence of the quality factors of the upper
polariton in the two cases is summarized in the bottom panel
Fig. 10(c)—the quality factors of the lower polaritons follow
a very similar trend, so, for clarity, are not reported. When
the Rabi frequency is small, e.g., the �R/ωqw = 0.15 value
used in Fig. 10(a), the magnetic-field-induced cavity protec-
tion competes against the magnetic linewidth broadening of
the ISB transition, calculated in Eq. (27). As a result, the
polaritonic quality factor Q+ increases with the magnetic field
to a maximum and then decreases again to its minimum value,
see the green solid line in Fig. 10(c). On the other hand, for
a larger value of the Rabi frequency, e.g., the �R/ωqw = 0.4
value used in Fig. 10(b), the polaritonic quality factor Q+
saturates to its maximum value, forming a plateau that extends
for a rather wide range of magnetic fields, see the red solid line
in Fig. 10(c). We also notice that in this regime of large Rabi
frequency, additional oscillations are visible in the polaritonic
quality factor for smaller values of magnetic fields. Here, the
maxima correspond to values of the Rabi frequency matching
the gap between two higher Landau levels.

B. Experimental implementations

In this section we discuss the actual experimental feasi-
bility of the magnetically-induced cavity protection for ISB
polaritons. In doing this, we will focus on the minimal values
of the magnetic field and of the Rabi frequency that are needed
to observe the effect. We restrict to devices operating in the
THz or midinfrared regime, mainly focusing on the parame-
ters reported in [17]. A typical size for a QW in this regime
is Lz ∼ 8−40 nm. Using the GaAs electron’s effective mass
m∗ ≈ 0.067 me, where me is the free electron mass, we have
that the energy range for the fundamental ISB transition is
given by

h̄ωqw ∼ 10−250 meV. (33)

The typical roughness fluctuation scale is around ξ0 ∼ 0.1 −
1 nm and its typical correlation length is ξc ∼ 1−10 nm. The
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FIG. 9. (a) Plot of the electronic contribution to the polariton
linewidth estimated using Eq. (30) as a function of Rabi coupling
�R, left (right) parts corresponding to the upper (lower) polariton.
The blue and red lines refer to the B = 0 and B = 4.5 B0 cases,
respectively. (b) Three examples of the cavity transmission Tc(ω)
given by Eq. (13) as a function of the incident frequency ω in the
presence/absence of magnetic field (blue and red lines, respectively)
for increasing values of the Rabi coupling �R (from left to right)
as indicated by the dashed, dotted, and dashed-dotted lines in panel
(a). (c) The quality factor of the lower (light) and upper (dark)
polaritons Q± = ω±/�± as a function of the Rabi frequency �R.
Blue and red lines refer to the cases in the absence/presence of
magnetic field B/B0 = 0, 4.5. The black dotted and black dashed-
dotted lines indicate the usual upper/lower polariton quality factors
obtained averaging between cavity and ISB linewidths, Q±, std =
2(ωc ± �R/2)/(γc + �qw). The light/dark red dashed lines indicate
the upper bound to the polariton quality factor set by the cavity losses
as defined in Eq. (32). Same system parameters as in Fig. 8 except
for the realistic value Qc = 150 of the cavity quality factor.

typical quality factor of the bare ISB transitions in these de-
vices is in the range Qqw ∼ 10−50.

In order to estimate the typical magnetic field and Rabi
frequency needed to quench the linewidth, there are two con-
ditions that we need to satisfy:

(1) We need to break the Lorentzian optical density in well
separated Gaussians. This is achieved when

ωB > �B. (34)

(2) We need to have a Rabi frequency that is large enough
to overcome the linewidth of the central Gaussian of the opti-
cal density and, thus, reach the strong-coupling regime. This
condition is maximally fulfilled when the polariton frequency
falls in the middle of a gap between two Landau levels. This

FIG. 10. [(a), (b)] Logscale color plot of the cavity transmission
Tc(ω) as a function of the magnetic field B/B0 and the external inci-
dent frequency ω/ωqw. In (a) �R/ωqw = 0.15 and in (b) �R/ωqw =
0.4. (c) Quality factor of the upper polariton as a function of the
magnetic field B/B0. The green and red solid lines refer to the
�/ωqw = 0.15 and 0.4 values used in panels (a) and (b), respectively.
Parameters for all plots: ωc = ωqw, ηdis = 0.1, ξc/lqw = 1, Fermi
energy EF /h̄ωqw = 0.5. For these parameters, the ISB quality factor
(without cavity) is found to be Qqw ≈ 22, while the cavity quality
factor is set to the realistic value Qc = 200.

occurs when

�R = ωB. (35)

Because of the very fast decay of the Gaussian tails of the
magnetic optical density, the first condition can be considered
fulfilled already when ωB = 2 �B, from which we define the
cavity-protection magnetic field value

Bcp = h̄�B

μ∗
B

. (36)

Using the Hikami linewidth Eq. (27), we can derive an analyt-
ical expression for this quantity,

Bcp = h̄

eξ 2
c

[
1 + 144 log(2)

π

(
ηdis

eξ 2
c

h̄

h̄ωqw

2μ∗
B

)2
]1/2

− h̄

eξ 2
c

.

(37)

Using some typical values such as ξ0 = 0.75 nm, ξc = 5 nm,
and Lz = 8 nm [18], and considering the typical effective Bohr
magneton μ∗

B ≈ 0.86 meV/T for the GaAs electron’s effec-
tive mass, we obtain h̄ωqw ≈ 262 meV, and Bcp ≈ 33.4 T,
which looks like a quite extreme value for the magnetic field.
Already for a slightly smaller value for the QW height fluctu-
ations, for instance ξ0 = 0.3 nm, we however obtain a much
smaller and accessible result Bcp ≈ 7.6 T. A complete plot of
Bcp in unit of Tesla, as a function of the ISB frequency ωqw

and the disorder correlation length ξc in the typical range for
THz-MIR ISB polaritons is displayed in Fig. 11 for a fixed
value of the QW length fluctuations ξ0 = 0.3 nm.
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FIG. 11. Logscale contour-plot of the cavity-protection magnetic
field Bcp as defined in (37) as a function of the intersubband fre-
quency ωqw and the disorder correlation length ξc. Here, Bcp is given
in units of Tesla, h̄ωqw is given in meV, and ξc in nm. The disor-
der amplitude is kept constant to ξ0 = 0.3 nm. The effective Bohr
magneton corresponding to the effective mass of electrons in GaAs
is used, μ∗

B ≈ 0.86 meV/T. The purple star indicates the position of
the setup inspired by [18] described in the text.

Since the values of ξ0 and ξc are hardly accessible to
direct measurement, it is useful to derive an expression for
Bcp as a function of quantities that are directly accessible to
experiments, like the central ISB frequency ωqw and the bare
QW quality factor Qqw. This can be achieved by expanding
Eq. (37) to lowest order in the small disorder limit, and com-
bining it with the Unuma linewidth in Eq. (23),

B(1)
cp ≈ 16 log(2)

π

1

Qqw

h̄ωqw

2μ∗
B

. (38)

This expression is plotted in Fig. 12, where we can clearly
identify the regime of interest for THz-MIR devices, in the

FIG. 12. Logscale contour plot of the cavity-protection magnetic
field B(1)

cp as predicted by Eq. (38) as a function of the intersubband
frequency h̄ωqw and the QW quality factor Qqw (in logscale). Here,
B(1)

cp is given in units of Tesla and h̄ωqw in meV. The red hexagon and
green circle mark the position of, respectively, typical THz [7,52,53]
and MIR [11] devices.

range of magnetic field between B ∼ 1−10 T. It is important
to stress that these values of magnetic field are already within
reach of current experiments, as also suggested by recent
works on similar devices [54–56]. Note that for the realistic
parameters of disorder considered here, the actual values of
B(1)

cp and B0 are quite close, with the approximated relation
B(1)

cp ≈ 7/
√

QqwB0.
As a final point, we need to address the second condition

for cavity protection, regarding the Rabi frequency �R. Com-
bining Eq. (35) with Eq. (38) we obtain

h̄�R = 2μ∗
BB(1)

cp = 16 log(2)

π

1

Qqw
h̄ωqw. (39)

For the range of quality factors estimated above, we obtain a
range for the minimal Rabi frequency necessary to implement
the magnetic-induced cavity protection in the order of

�R

ωqw
∼ 0.05−0.5. (40)

From this simple estimation it appears that the required Rabi
frequency is not far from the ISB transition frequency, �R ∼
ωqw, pushing the system from the strong coupling towards the
ultrastrong coupling (USC) regime. Given the complexities of
the theoretical description of the USC regime [9,10] we have
chosen to restrict here our attention to the strong coupling
physics and we leave a specific investigation of the USC
features to a future work.

As a final point, it is important to comment on the role of
other processes that, in addition to the scattering on disorder
potential, may contribute to the linewidth of the ISB [18].
While all decoherence channels stemming from static exter-
nal potentials are tamed by the cavity protection mechanism
discussed here for interface roughness, e.g., alloy disorder and
ionized impurity, a special attention must be paid to phonon
scattering processes. Longitudinal acoustic (LA) phonons typ-
ically have low frequencies, much lower than the intrinsic
broadening of polaritons: as such, they can be considered as
quasistatic and the virtually elastic LA phonon scattering thus
fall in the same category of static potentials.

Longitudinal optical (LO) phonons have instead a much
higher energy ELO on the order of a few ten meV in typical
materials and their contribution to the linewidth is small but
sizable in many cases, giving a lower bound to the achievable
linewidth on the order of 1 meV for transitions in the MIR
according to [18]. Still there exist regimes, e.g., THz ISB tran-
sitions with ω21 < ELO and a low electron density such that
EF < ELO for which LO phonon emission is kinematically not
allowed and the lower bound disappears.

V. CONCLUSIONS

In this paper, we have proposed and characterized a strat-
egy to dramatically improve the quality factor of intersubband
polaritons in semiconductor-based devices.

By applying a strong magnetic field perpendicular to the
quantum well plane, the dominant Lorentzian broadening of
the intersubband transition due to scattering of electrons onto
interface roughness disorder turns into a Gaussian one due
to the strong electron localization in the disorder potential.
When strongly coupled to the cavity mode, a cavity protection
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mechanism sets in which removes the Gaussian linewidth,
leaving only the cavity contribution to the polariton linewidth.

In combination with higher-Q cavity configurations, our
proposal has the potential to lead to polariton devices with
unprecedented performances. Based on available experimen-
tal evidence, we anticipate that a narrower polariton linewidth
will be a game-changing step in view of technological applica-
tions of intersubband polaritons, including nonlinear polariton
devices [34] and polariton lasing [11,17]. On a longer perspec-
tive, our proposal highlights intersubband polariton physics in
the presence of magnetic fields as a novel arena where to study
the interplay between light-matter interaction with quantum
Hall physics [56–62].

ACKNOWLEDGMENTS

We are grateful to Giacomo Scalari, Ivan Amelio, Al-
berto Nardin, and Jacopo Nespolo for fruitful discussions.
We acknowledge financial support from the European Union
FET-Open Grant No. MIR-BOSE (737017).

APPENDIX A: INPUT-OUTPUT THEORY OF THE CAVITY
PLASMA HAMILTONIAN IN THE WEAK EXCITATION

REGIME

Consider the cavity-plasma Hamiltonian defined in
Eq. (10). Since we are looking only at its low-energy excita-
tions we can truncate the electronic Hilbert space keeping only
the unperturbed Fermi sea state |FS〉 and its lowest single-
electron-hole-pair excitations between the first two subbands,
given by

|k0 q1〉 = c0 kc†
1 q|FS〉, (A1)

where k � kF , with kF the Fermi momentum. All the
Fermionic operators in Eq. (10) are then replaced by Pauli
matrices, each of them representing a transition between the
Fermi sea and one electron-hole state (h̄ = 1),

Htot ≈ ωca†a +
∑

�λ
(ωqw + ω

‖
�λ)s�λ

z

+ �R

2

⎛
⎝a ·

∑
�λ

��λs�λ
+ + H.c.

⎞
⎠. (A2)

Here every couple �λ = (k, k′) identify a single two-level sys-
tem and s�λ

z , s�λ
−, s�λ

+ are the usual spin-1/2 operators. The range
of the vectorial index �λ is limited to the semirectangular area
(−∞,∞) × [−kF , kF ].

We then derive the usual quantum Langevin equations [40]
assuming a two-sided cavity and a generic bath for the ISB
transitions. We have

i∂t a =
(

ωc − i
γc

2

)
a + �R

2

∑
�λ

��λs�λ
− +

√
γ

2
αin(t ) + bc,

(A3)

i∂t s
�λ
− = (ωqw + ω

‖
�λ)s�λ

− − �R��λs�λ
z a + i2κs�λ

z s�λ
− − 2s�λ

z b�λ,

(A4)

i∂t s
�λ
z = �R

2
(�∗

�λs�λ
+a − ��λs�λ

−a†) ± i2κs�λ
z − iκ + b�λs�λ

+ − b†
�λs�λ

−.

(A5)

Here γc is the cavity loss rate, κ is the ISB transition relaxation
rate, bc and b�λ are respectively the cavity and ISB transition
quantum noise operators. αin(t ) = α0

ine−iωt is the coherent in-
put field, assumed to be monochromatic at a given frequency
ω. The input αin, reflected αr , transmitted αt and cavity field a
are related by the following input-output formulas

αr = αin +
√

γc/2a,

αt =
√

γc/2a. (A6)

We now consider the mean-field and weak driving regime.
We then replace the operators a, s�λ

−, s�λ
z in Eqs. (A3)–(A5)

with their respective expectation values (for simplicity in the
notation we still keep the same notation for the operators and
their mean value). The quantum noise operators drop out since
that at temperature T = 0 they have zero mean value. Because
of the weak drive we can also approximate s�λ

z ≈ −1/2.
In the rotating frame at the input frequency ω, the mean-

field Langevin equations take the form of a driven dissipative
system of coupled harmonic oscillators

i∂t a =
(

ωc − ω − i
γc

2

)
a + �R

2

∑
�λ

��λs�λ
− +

√
γ

2
αin,

(A7)

i∂t s
�λ
− = (ωqw + ω

‖
�λ − ω)s�λ

− + �R

2
��λa − iκs�λ

−. (A8)

Solving these equations for the steady state, and defining the
optical transmission through the cavity as

Tc(ω) = αt

αin
, (A9)

we immediately arrive to Eq. (13).

APPENDIX B: ELECTRONIC RESPONSE AND SUBBAND
GREEN’S FUNCTION

The electronic optical response defined in Eq. (14) can be
rewritten within a Green’s function formalism. We start from
the initial formula

χqw(ω) = −
∑

k,k′�kF

|�k,k′ |2
ω − ωqw − ω

‖
k k′ + iκ

=
∫

d2x d2y

Ne

∑
k,k′�kF

〈y|ϕ2 k〉〈ϕ2 k|x〉〈x|ϕ1 k′ 〉〈ϕ1 k′ |y〉
ω − ωqw − ω

‖
k k′ + iκ

(B1)

Using the Sokhatsky identity

lim
ε→0

Im

[
1

ω − ωk + iε

]
= −πδ(ω − ωk ) (B2)
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we can write

χqw(ω) =
∫

dω′dω′′ d
2xd2y

π2Ne

× Im[G2(y, x, ω′)]Im[G1(x, y, ω′′)]F (ω′′)
ω − (ω′ − ω′′) + iκ

(B3)

where the Green’s function is defined in the Lehman represen-
tation as

Gn(x, y, ω) = lim
ε→0

∑
k

〈x|ϕn k〉〈ϕn k|y〉
ω − ωn,k + iε

, (B4)

ωn,k = ε
qw
n /h̄ + ω‖

n(k) and F (ω) is the Fermi distribution. The
QW optical spectral density is then given by

ρqw(ω) = lim
κ→0

1

π
Im[χqw(ω)]

=
∫

dω′ d
2xd2y

Ne
ρ2(y, x, ω − ω′)ρ1(x, y, ω′)F (ω′)

(B5)

where

ρn(x, y, ω) = − 1

π
Im[Gn(x, y, ω)] (B6)

is the local spectral density of a single n subband.

APPENDIX C: TECHNICAL DETAILS ON THE
NUMERICAL CALCULATION

Here we consider the Hamiltonian as defined in Eq. (5),
including the presence of the homogeneous magnetic field via
the symmetric-gauge vector potential �A(�r) = B/2(−y, x, 0),

H‖
n = ( �p − e �A(�r)) 2

2m∗ + δUn(�r). (C1)

Here, the disorder potential is

δUn(�r) = ∂Lεn(Lqw) · δL(�r), (C2)

in terms of the energy εn(Lqw) of the electronic state trapped
in the QW in the z direction. The QW interface roughness
δL is a random variable, in general with nontrivial spatial
correlations. We can thus write

δL(�r)δL(0) = ξ 2
0 C(�r), (C3)

where ξ0 quantifies the magnitude of the fluctuations of the
QW thickness and C(�r) is an arbitrary correlation function
normalized to have C(0) = 1/(2π ). We can then introduce the
adimensional random variable �(�r) = δL(�r)/ξ0.

We then rescale the position and the momenta as

�r �−→ �r · lqw �p �−→ �p · h̄/lqw (C4)

in terms of an equivalent harmonic-oscillator length within the
QW

lqw =
(

h̄

m∗ωqw

)1/2

. (C5)

Defining �a = (−y, x)/2, and considering the usual cyclotron
frequency as ωB = eB/m∗, we have

H‖
n = h̄ωqw

[
( �p − ηB�a)2

2
+ gnηdis�(�r)

]
, (C6)

where we introduced the two adimensional energy magnitudes

ηB = ωB

ωqw
, ηdis = ∂Lε1(Lqw)ξ0

h̄ωqw
, (C7)

and the numerical coefficients

gn = ∂Lεn(Lqw)

∂Lε1(Lqw)
. (C8)

In the specific case of an infinite box potential gn = n2,
while in the harmonic oscillator case gn = n − 1/2, with n =
1, 2 . . . .

In our numerical calculations, the adimensional disorder
is generated by sampling �(�r) from a Gaussian distribution
with unit variance at every position �r. We then take its Fourier
transform and we impose a Gaussian cut-off

�̃(�k) �−→ ξc√
2

e−ξ 2
c k2/8�̃(�k). (C9)

After transforming back to real space, we are left with the
desired correlator

�(�r)�(�r ′ ) = e−|�r−�r ′ |2/ξ 2
c

2π
. (C10)

We then proceed to diagonalize the rescaled Hamiltonian
Eq. (C6) on a given basis. When the magnetic field is not
present B = 0 we consider a finite box of lengths Lx, Ly whose
basis wave functions are

ϕnx,ny (�r) = 2√
LxLy

sin

(
πnx

Lx
x

)
sin

(
πny

Ly
y

)
, (C11)

with nx, ny = 1, 2 . . .. Same results are obtained considering a
periodic system and considering a planewave eigenbasis.

In the presence of a finite magnetic field B 
= 0, we first
need to fix a gauge for the vector potential. For instance, in the
symmetric gauge where �a = (−y, x)/2. In order to simulate
an infinite system with open boundary conditions we use the
basis set

ϕ�k (�r) = 1√
2π lB

√
�!

k!
ξ k−�e−|ξ |2/2Lk−�

� (|ξ |2), (C12)

where ξ = (x + iy)/(
√

2lB) and Lα
� (x) are the generalized

Laguerre polynomials. Since these states are concentric cir-
cles, centered in the origin, we include as many states as
possible to fill the spatial extension of the system, cutting the
basis right before touching the border of the numerical space
grid. If the total extension of all basis states Lbasis is such
that Lbasis � lB, ξc, averaging over many realizations is then
approximately similar to consider a very large system, where
every realization is a smaller patch of the whole system.

In order to compute the matrix elements on a given basis
we consider a two dimensional spatial grid Nx × Ny, where we
typically use a number of grid points in the range Nx = Ny =
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100−150, with a grid step in the range �r/Lz = 0.1−0.5, de-
pendently from the chosen values of ξc and lB. All final results
are typically averaged over Ndis ∼ 20−100 realizations.

Notice that we do not include the edge states in our cal-
culation. This is motivated by the quantitative smallness of
their contribution, which is completely negligible in an ex-
tended system. Indeed in a very large system the edge modes
represents a much smaller fraction of the whole system, and,
since the dipole moment along z is the same for every electron,
localized or nonlocalized, their contribution is negligible with
respect to the total number of bulk states.

APPENDIX D: LOWEST LANDAU LEVEL DISORDERED
DENSITY OF STATE

In this section we briefly review the calculation of the
disordered density of states in the lowest Landau level (LLL)
contained in [44]. For simplicity we work in adimensional
units where ωqw = 1.

The calculation starts from the identity in Eq. (B6). What
we need to calculate is the Green’s function for the disordered
Schrödinger equation, projected in the LLL and averaged over
the disorder. To do so we introduce a quantum field theory
representation of the Schrödinger Green’s function in terms
of complex scalar field path integral [63]

G(x, y, ω) = 〈x| 1

ω − H
|y〉

= 1

i

∫
DφDφ∗ei

∫
d2x′[φ(x′ )∗(ω−H )φ(x′ )]φ(x)φ∗(y)∫

DφDφ∗ei
∫

d2x′[φ(x′ )∗(ω−H )φ(x′ )]
.

(D1)

We then use the relation between path integral and functional
determinant to transform the Bosonic path integral in the
denominator into a Grassmannian path integral following the
so-called super-symmetric approach [64]

1∫
DφDφ∗ei

∫
d2x′[φ(x′ )∗(ω−H )φ(x′ )]

= det[ω − H]

=
∫

DηDη̄ei
∫

d2x′[η(x′ )(ω−H )η̄(x′ )]. (D2)

Here η(x) is an anticommuting Grassmann field. Considering
our Hamiltonian composed by kinetic energy T̂ and disorder
potential δU terms

〈x| 1

ω − H
|y〉

= 1

i

∫
DφDφ∗DηDη̄ φ(x)φ∗(y)

× exp

[
i
∫

d2x′[φ∗(ω − T̂ )φ + η(ω − T̂ )η̄]

]

× exp

[
−i

∫
d2x′δU (x′)(φ∗φ + ηη̄)

]
. (D3)

We now take the average over the disorder. Since we are
considering a Gaussian disorder, we can safely apply the

second cumulant expansion,

exp

[
−i

∫
d2x′δU (x′) f (x′)

]

= exp

[
−1/2

∫
d2x1d2x2δU (x1)δU (x2) f (x1) f (x2)

]
.

(D4)

where · · · indicates the average over many disorder re-
alizations. We then introduce the disorder correlator as
δU (x1)δU (x2) = C(x1 − x2). In the case of infinite range
correlations (ξc → ∞) we have C(x1 − x2) = C0, and the av-
eraged Green’s function reads

〈x| 1

ω − H
|y〉

= 1

i

∫
DφDφ∗DηDη̄ φ(x)φ∗(y)

× exp

[
i
∫

d2x′[φ∗(ω − T̂ )φ + η(ω − T̂ )η̄]

]

× exp

[
−C0

2

(∫
d2x′(φ∗(x′)φ(x′) + η(x′)η̄(x′))

)2
]
.

(D5)

We now project the fields over the LLL considering φ(x) =∑
k ϕ0 k (x)ak and η(x) = ∑

k ϕ0, kbk , where ϕ�,k is the wave
function of the kth state in the �th Landau level. We also insert
in the integral an identity operator using a delta function and
we shift ω �→ ω − ωB/2.

The Green’s function then reads

〈x| 1

ω − H
|y〉 = 1

i

∫ +∞

−∞
dσ e− C0

2 σ 2+iωσ D(x, y, σ ) (D6)

with

D(x, y, σ ) =
∑

k

ϕ0 k (x)ϕ∗
0 k (y)Ik (σ ), (D7)

and

Ik (σ ) =
∫

�k′ d2ak′d2bk′ a∗
k ak δ

(
σ −

∑
k

(a∗
k ak + b∗

kbk )

)

= lim
ε→0

∫
dt

2π

∫
�k′ d2ak′d2bk′ a∗

k ak

× eitσ−i(t−iε)
∑

k (a∗
k ak+b∗

kbk )

=
∫

dt

2π i

eitσ

t − iε
= �(σ ) (D8)

in terms of the step function �(σ ).
To get the density of states, we need to set x = y, integrate

over the whole area A of the system and finally normalise over
the total electron number. Since

∑
k |ϕ0 k (x)|2 = 1/(2π l2

B) we
get a factor A/(2π l2

B) from the spatial integration. In a fi-
nite system the total number of states in the LLL is NLLL ∼
A/(2π l2

B) [47]. Completing the square, performing the Gaus-
sian integral in Eq. (D6) and using Eq. (B6) we finally find the
density of states for the LLL in the infinite correlation-length
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approximation

ρ∞
LLL(ω) ≈ 1

ηdis
e
− πω2

η2
dis , (D9)

where we considered that C0 = η2
dis/(2π ). From this dis-

tribution we extract the Hikami linewidth in the infinite
correlation-length case �∞

B H defined in Eq. (29).
In order to include information about the finite correlation

length, we expand the correlator in series as C(x) ≈ C0(1 −
x2/ξ 2

c ). In Eq. (D5) we need to add to the argument of the
exponential in the last line the following term:

C0

2

∫
d2x1d2x2

|x1 − x2|2
ξ 2

c

(φ∗(x1)φ(x1) + η(x1)η̄(x1))

× (φ∗(x2)φ(x2) + η(x2)η̄(x2))

≈ 2l2
B

ξ 2
c

[∑
k

(a∗
k ak + b∗

kbk )

]2

. (D10)

We see that this term contributes only by a shift of C0, which
is replaced by C0 − 2C0l2

B/ξ 2
c . We then resum all the terms

similar to this one from the higher order correlator expansion
considering that C0 − 2C0l2

B/ξ 2
c ≈ C0/(1 + 2l2

B/ξ 2
c ).

In this way, we arrive to the LLL density of states in the
case of a finite correlated disorder potential

ρLLL(ω) ≈ 1√
2πγLLL

e
− ω2

2γ 2
LLL , (D11)

where

γLLL = ηdisξc/lB√
2π

(
ξ 2

c /l2
B + 2

) . (D12)

The FWHM reported in Eq. (26) is then equal to �LLL =
2
√

2 log(2) γLLL.

APPENDIX E: RABI SPLITTING
AND POLARITONIC LINEWIDTH

Here we summarize the results contained in [22] regarding
the cavity protection effect.

The poles of the cavity transmission Eq. (13) give the
system’s resonant frequencies and their linewidth, through the
equation T −1

c (ω) = 0.
In a perfectly clean system or when the disorder potential

is identical for the two subbands, we have �k k′ = δkk′ . We
thus obtain the standard cavity transmission modified by the

coupling to the QW

T clean
c (ω) = − γc/2

ω − ωc + i γc

2 + �2
R

4 χclean(ω)
, (E1)

where

χclean(ω) = − 1

ω − ωqw + i κ
2

(E2)

is the resonant response of the QW. Assuming the light-matter
resonance condition ωc ∼ ωqw in the strong coupling regime
�2

R/(γcκ ) � 1, we have that the cavity transmission has two
resonant peaks, corresponding with the polaritonic frequen-
cies ω± ≈ ωc ± �R/2. The linewidth of these two peaks is
the same and is given by the average between the cavity and
the QW linewidths � ≈ (γc + κ )/2.

In a situation of small disorder we still expect to have
the two polariton peaks around the frequencies ω± but with
a modified linewidth. In order to derive this new linewidth
we split the QW optical response in real and imaginary part
χ (ω) = χR(ω) + iχ I (ω), considering that χ I = πρ(ω). We
also work in a rotating frame, such that ω − ωc �−→ ω, with
ωc = ωqw. The poles of the cavity transmission are then given
by

ω + �2
R

4
χR(ω) + i

2

(
γc + π

2
�2

Rρ(ω)
)

= 0. (E3)

Assuming the strong coupling regime, where �R is much
larger than the linewidth of ρ(ω)

χR(ω) = −
∫

dω′ ρ(ω′)
ω − ω′ ≈ − 1

ω
, (E4)

and we approximate

ρ(ω) ≈ ρ(ω±). (E5)

From these relations we immediately obtain the approximated
pole equation, valid only in the proximity of ω ∼ ω±,

ω2 − �2
R

4
+ i

(γc

2
+ π

4
�2

Rρ(ω±)
)
ω = 0. (E6)

Solving it we find

ω = ±�R

2

√
1 − �2±

2�2
R

− i
�±
2

, (E7)

where the polaritonic linewidth is given by

�± = γc + π
2 �2

Rρ(ω±)

2
. (E8)
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[30] D. E. Nikonov, A. Imamoğlu, L. V. Butov, and H. Schmidt, Col-
lective Intersubband Excitations in Quantum Wells: Coulomb
Interaction versus Subband Dispersion, Phys. Rev. Lett. 79,
4633 (1997).

[31] C. A. Ullrich and G. Vignale, Theory of the Linewidth of
Intersubband Plasmons in Quantum Wells, Phys. Rev. Lett. 87,
037402 (2001).

[32] K. Kempa, Y. Zhou, J. R. Engelbrecht, P. Bakshi, H. I. Ha, J.
Moser, M. J. Naughton, J. Ulrich, G. Strasser, E. Gornik, and
K. Unterrainer, Intersubband Transport in Quantum Wells in
Strong Magnetic Fields Mediated by Single- and Two-Electron
Scattering, Phys. Rev. Lett. 88, 226803 (2002).

[33] K. Kempa, Y. Zhou, J. R. Engelbrecht, and P. Bakshi, Electron-
electron scattering in strong magnetic fields in quantum well
systems, Phys. Rev. B 68, 085302 (2003).

[34] R. Cominotti, H. Leymann, J. Nespolo, J.-M. Manceau, M.
Jeannin, R. Colombelli, and I. Carusotto, Theory of coherent
optical nonlinearities of intersubband transitions in semicon-
ductor quantum wells, arXiv:2109.00285.

[35] D. De Bernardis, T. Jaako, and P. Rabl, Cavity quantum elec-
trodynamics in the nonperturbative regime, Phys. Rev. A 97,
043820 (2018).

[36] V. Rokaj, D. M. Welakuh, M. Ruggenthaler, and A. Rubio,
Light–matter interaction in the long-wavelength limit: no
ground-state without dipole self-energy, J. Phys. B: At. Mol.
Opt. Phys. 51, 034005 (2018).

[37] Y. Todorov, Dipolar quantum electrodynamics of the two-
dimensional electron gas, Phys. Rev. B 91, 125409 (2015).

[38] Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang,
R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, Optical
properties of metal-dielectric-metal microcavities in the THz
frequency range, Opt. Express 18, 13886 (2010).

[39] D. De Bernardis, P. Pilar, T. Jaako, S. De Liberato, and P. Rabl,
Breakdown of gauge invariance in ultrastrong-coupling cavity
QED, Phys. Rev. A 98, 053819 (2018).

224206-16

https://doi.org/10.1088/1367-2630/16/4/043029
https://doi.org/10.1103/PhysRevLett.105.196402
https://doi.org/10.1103/PhysRevB.72.115303
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1103/PhysRevLett.128.247401
https://doi.org/10.1103/PhysRevB.87.235322
https://doi.org/10.1038/s41566-020-0673-2
https://doi.org/10.1088/0268-1242/20/10/001
https://doi.org/10.1103/PhysRevLett.100.136806
https://doi.org/10.1103/PhysRevLett.102.136403
https://doi.org/10.1103/PhysRevX.5.011031
https://doi.org/10.1063/1.1535733
https://doi.org/10.1103/PhysRevA.53.2711
https://doi.org/10.1103/PhysRevB.96.235301
https://doi.org/10.1103/PhysRevA.83.053852
https://doi.org/10.1103/PhysRevA.84.063810
https://doi.org/10.1038/nphys3050
https://doi.org/10.1038/ncomms14107
https://doi.org/10.1038/s41534-017-0041-3
http://arxiv.org/abs/arXiv:2208.12088
https://doi.org/10.1103/PhysRevB.85.045304
https://doi.org/10.1103/PhysRevB.64.041306
https://doi.org/10.1103/PhysRevLett.79.4633
https://doi.org/10.1103/PhysRevLett.87.037402
https://doi.org/10.1103/PhysRevLett.88.226803
https://doi.org/10.1103/PhysRevB.68.085302
http://arxiv.org/abs/arXiv:2109.00285
https://doi.org/10.1103/PhysRevA.97.043820
https://doi.org/10.1088/1361-6455/aa9c99
https://doi.org/10.1103/PhysRevB.91.125409
https://doi.org/10.1364/OE.18.013886
https://doi.org/10.1103/PhysRevA.98.053819


MAGNETIC-FIELD-INDUCED CAVITY PROTECTION FOR … PHYSICAL REVIEW B 106, 224206 (2022)

[40] C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed., edited
by H. Haken (Springer, New York, 2000).

[41] T. Ando, Lineshape of inter-subband optical transitions in space
charge layers, Z. Phys. B 24, 33 (1976).

[42] C. Ndebeka-Bandou, F. Carosella, R. Ferreira, A. Wacker, and
G. Bastard, Relevance of intra- and inter-subband scattering
on the absorption in heterostructures, Appl. Phys. Lett. 101,
191104 (2012).

[43] T. Grange, S. Mukherjee, G. Capellini, M. Montanari,
L. Persichetti, L. Di Gaspare, S. Birner, A. Attiaoui, O.
Moutanabbir, M. Virgilio, and M. De Seta, Atomic-Scale
Insights into Semiconductor Heterostructures: From Exper-
imental Three-Dimensional Analysis of the Interface to a
Generalized Theory of Interfacial Roughness Scattering, Phys.
Rev. Appl. 13, 044062 (2020).

[44] S. Hikami and E. Brézin, Anderson localization in a spatially
correlated random potential under a strong magnetic field,
J. Phys. France 46, 2021 (1985).

[45] T. Ando, Y. Matsumoto, and Y. Uemura, Theory of Hall effect
in a two-dimensional electron system, J. Phys. Soc. Jpn. 39, 279
(1975).

[46] T. Ando, Electron localization in a two-dimensional system in
strong magnetic fields. I. Case of short-range scatterers, J. Phys.
Soc. Jpn. 52, 1740 (1983).

[47] B. Huckestein, Scaling theory of the integer quantum Hall
effect, Rev. Mod. Phys. 67, 357 (1995).

[48] D. R. Abujetas, N. van Hoof, S. ter Huurne, J. G. Rivas, and
J. A. Sánchez-Gil, Spectral and temporal evidence of robust
photonic bound states in the continuum on terahertz metasur-
faces, Optica 6, 996 (2019).

[49] F. Pisani, S. Zanotto, and A. Tredicucci, Highly resolved ultra-
strong coupling between graphene plasmons and intersubband
polaritons, J. Opt. Soc. Am. B 37, 19 (2020).

[50] S. Chalimah, Y. Yao, N. Ikeda, K. Kaneko, R. Hashimoto, T.
Kakuno, S. Saito, T. Kuroda, Y. Sugimoto, and K. Sakoda, Mid-
infrared Dispersion Relations in InP-Based Photonic Crystal
Slabs Revealed by Fourier-Transform Angle-Resolved Reflec-
tion Spectroscopy, Phys. Rev. Appl. 15, 064076 (2021).

[51] N. J. J. van Hoof, D. R. Abujetas, S. E. T. ter Huurne, F.
Verdelli, G. C. A. Timmermans, J. Sánchez-Gil, and J. G.
Rivas, Unveiling the symmetry protection of bound states in the
continuum with terahertz near-field imaging, ACS Photonics 8,
3010 (2021).

[52] C. Deimert, P. Goulain, J.-M. Manceau, W. Pasek, T. Yoon, A.
Bousseksou, N. Y. Kim, R. Colombelli, and Z. R. Wasilewski,

Realization of Harmonic Oscillator Arrays with Graded Semi-
conductor Quantum Wells, Phys. Rev. Lett. 125, 097403
(2020).

[53] J. Raab, C. Lange, J. L. Boland, I. Laepple, M. Furthmeier, E.
Dardanis, N. Dessmann, L. Li, E. H. Linfield, A. G. Davies,
M. S. Vitiello, and R. Huber, Ultrafast two-dimensional field
spectroscopy of terahertz intersubband saturable absorbers,
Opt. Express 27, 2248 (2019).

[54] G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie,
and G. Davies, Terahertz Emission from Quantum Cascade
Lasers in the Quantum Hall Regime: Evidence for Many Body
Resonances and Localization Effects, Phys. Rev. Lett. 93,
237403 (2004).

[55] S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai,
M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi,
Magnetic-field-induced superconductivity in a two-dimensional
organic conductor, Nature (London) 410, 908 (2001).

[56] F. Appugliese, J. Enkner, G. L. Paravicini-Bagliani, M. Beck,
C. Reichl, W. Wegscheider, G. Scalari, C. Ciuti, and J.
Faist, Breakdown of topological protection by cavity vacuum
fields in the integer quantum Hall effect, Science 375, 1030
(2022).

[57] S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider,
and A. Imamoglu, Cavity quantum electrodynamics with many-
body states of a two-dimensional electron gas, Science 346, 332
(2014).

[58] S. Ravets, P. Knüppel, S. Faelt, O. Cotlet, M. Kroner, W.
Wegscheider, and A. Imamoglu, Polaron Polaritons in the In-
teger and Fractional Quantum Hall Regimes, Phys. Rev. Lett.
120, 057401 (2018).

[59] P. Knüppel, S. Ravets, M. Kroner, S. Fält, W. Wegscheider, and
A. Imamoglu, Nonlinear optics in the fractional quantum Hall
regime, Nature (London) 572, 91 (2019).

[60] C. Ciuti, Cavity-mediated electron hopping in disordered quan-
tum Hall systems, Phys. Rev. B 104, 155307 (2021).

[61] A. Rubio, A new Hall for quantum protection, Science 375, 976
(2022).

[62] V. Rokaj, M. Penz, M. A. Sentef, M. Ruggenthaler, and A.
Rubio, Quantum Electrodynamical Bloch Theory with Homo-
geneous Magnetic Fields, Phys. Rev. Lett. 123, 047202 (2019).

[63] A. Zee, Quantum Field Theory in a Nutshell; 1st ed. (Princeton
University Press, Princeton, NJ, 2003).

[64] E. Brézin, D. J. Gross, and C. Itzykson, Density of states in
the presence of a strong magnetic field and random impurities,
Nucl. Phys. B 235, 24 (1984).

224206-17

https://doi.org/10.1007/BF01312871
https://doi.org/10.1063/1.4766192
https://doi.org/10.1103/PhysRevApplied.13.044062
https://doi.org/10.1051/jphys:0198500460120202100
https://doi.org/10.1143/JPSJ.39.279
https://doi.org/10.1143/JPSJ.52.1740
https://doi.org/10.1103/RevModPhys.67.357
https://doi.org/10.1364/OPTICA.6.000996
https://doi.org/10.1364/JOSAB.37.000019
https://doi.org/10.1103/PhysRevApplied.15.064076
https://doi.org/10.1021/acsphotonics.1c00937
https://doi.org/10.1103/PhysRevLett.125.097403
https://doi.org/10.1364/OE.27.002248
https://doi.org/10.1103/PhysRevLett.93.237403
https://doi.org/10.1038/35073531
https://doi.org/10.1126/science.abl5818
https://doi.org/10.1126/science.1258595
https://doi.org/10.1103/PhysRevLett.120.057401
https://doi.org/10.1038/s41586-019-1356-3
https://doi.org/10.1103/PhysRevB.104.155307
https://doi.org/10.1126/science.abn5990
https://doi.org/10.1103/PhysRevLett.123.047202
https://doi.org/10.1016/0550-3213(84)90146-9

