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Multisubband plasmons: Beyond the parabolicity in the semiclassical model
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This work studies the impact of the nonparabolicity on the formation of multisubband plasmons. We explore
three semiclassical optical response models and compare their predictions to temperature-dependent absorption
measurements from three structures: all doped GaAs/AlGaAs quantum wells with continuously varied parabolic
binding potentials. We show that qualitative improvement in the prediction of the plasmon absorption peak can
only be obtained by including both the energy and wave-function dependence on the in-plane wave vector. Our
model, developed to include both these dependencies, uses a �k · �p-derived current density operator (instead of the
usual scalar effective mass one). The model should be readily generalizable to a wide set of nanostructures, such
as asymmetric half-parabolic wells or narrow band materials nanostructures beyond the quasi-Kohn regime.
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I. INTRODUCTION

Recently, harmonic continuously graded alloy semicon-
ductor quantum wells have been examined in Ref. [1]. The
system exhibits a single absorption peak up to room tem-
perature and remarkably small relative linewidths (5.6%) at
liquid helium temperature. The existence of a single strong
peak1 superposition of underlying subband-pair resonators is
called the multisubband plasmon (MSP) [2]. The absorption
frequency is largely independent of doping and temperature,
remaining very close to target frequency 3 THz. However,
while the temperature redshift is small (being basically a
small order correction in the case of a nearly perfect parabolic
confinement), it is in stark qualitative contrast to the blueshift
predictions of the MSP formation model. As pointed out in
the referenced work Ref. [1], further effort is needed to get
the model details right.

A simple model of QW was given in Ref. [3], in the case of
a single absorption mode coming from a single intersubband
(ISB) electron transition. This model includes the depolari-
sation shift [4], but it does not account for the superposition
effects of different intersubband resonators. To describe the
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1In fact, what one directly gets from our model are the effective

permittivity and the absorption coefficient. For the purpose of this
work, as long as there is only one absorption peak present with a
single maximum (which is always the case for the results presented
in this work), it is interpreted as the MSB.

formation of MSPs, two main classes of models have been
used thus far, one quantum and one semiclassical.

The quantum model [5–8] employs a light-matter inter-
action Hamiltonian, second-quantized in the electric dipole
gauge, describing the interaction in terms of the elec-
tric displacement field and polarization density. Using a
Bogoliubov-style diagonalization procedure twice, it yields
first the depolarization shift (as a self-interaction transition
effect) and then the multisubband modes. Finally, the light-
matter coupling part of the Hamiltonian is given, using
effective plasma frequencies and overlap factors for the MSP
modes. In the quantum model for the square QWs all the
ISB transitions can be assumed to have the same constant
effective length [6,9]. This simplification allows the model
to be extended to nonparabolic subbands, and an effective
dielectric tensor can be calculated [10]. This approach mir-
rors much earlier work by Warburton et al. who showed an
absorption concentration effect in heavily doped InAs/AlSb
QWs similar to the MSP mode concentration [11]. Unfortu-
nately, this assumption holds only for the adjacent transitions
in square QWs, it does not hold for parabolic quantum wells
(PQWs) or other potential shapes in general. For instance, for
nonadjacent transitions in square wells, one must revert to the
full diagonalization procedure of the quantum model to obtain
the correct results [6].

The quantum method has been used quite successfully for
square wells, and almost certainly could be extended to treat
nonparabolic subbands more generally in the context of �k · �p
theory. However, at present it is not obvious how best to tackle
such an extension in a computationally feasible manner. In-
stead, we turn to a semiclassical approach, based on the work
of Alpeggiani and Andreani [12]. Here, the “workhorse” is
the nonlocal susceptibility tensor, as obtained in Refs. [13–15]
using a Green function formalism. It has been used to study
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the light-matter coupling for both ISB transitions [13–16] and
exciton-polaritons [17]. The derivation of the model is given
in Appendix B.

Motivated by previous experimental work, we look here
at an example case of PQWs, which have the interesting
property that in the superposition of underlying subband-pair
resonators certain effects appear to cancel out. Let us imagine
an undoped system with perfectly parabolic (in-plane) single
electron energy subbands as a starting point. As the doping
is increased and the conduction bands start to be occupied,
two things will happen: (1) the electron-electron interaction
will deform (bend) the bands resulting in a redshift in inter-
subband transition energies, and (2) the ISB resonators will
interact resulting in a general blueshift of the MSP mode with
respect to individual intersubband modes. Those two effects
should shift the energy of the renormalized MSP mode ex-
actly oppositely, effectively canceling both contributions out.
That is, the MSP transition energy should be the same as the
intersubband transition energy of the single electron. This well
known effect is called the Kohn theorem [18] and it also takes
place in semiconductor systems [19].2 In the time-dependent
DFT community, its generalization is known as the harmonic
potential theorem; see Ref. [20]. In the case of a system
where single electron subbands are nearly parabolic, like our
PQW, one should expect that the MSP energy will be nearly
unaffected, with a possible energy shift being a smaller-order
effect.

Importantly, though, real-world PQWs do not conform per-
fectly to the Kohn theorem. Among the departures from ideal
parabolicity of the electron bands we have: (1) the truncation
of the PQW potential due to finite thickness of the wells, (2)
the limited knowledge of the material parameters resulting in
only quasi-ideal growth conditions, and (3) the mixing be-
tween the conduction and valence bands due to the spin-orbit
interaction. These effects will result in small departures from
the behavior of an ideal parabolic potential.

PQWs are thus an interesting test case for these smaller
effects. The electron interactions which would typically dom-
inate are mostly canceled out, leaving us in a quasi-Kohn
regime where these smaller effects are more visible. Further-
more, we should expect that in-plane nonparabolicity due to
the spin-orbit interaction (not to be confused with nonparabol-
icity of the PQW potential in the growth direction), will play
an increasing role as the temperature is pushed toward room
temperature. The higher we move above cryogenic tempera-
tures, the more occupation we will see at �k‖ values far from the
� point. Therefore, we should not expect that we can assume
the transition energies nor the wave functions to be constant
for all �k‖.

In principle, the linear response of the nonparabolic system
can be obtained within the scope of the self-consistent time-

2Strictly speaking, the Kohn theorem is about the cancellation of
electron-electron interactions in cyclotron systems. The analogous
effect in quantum well systems like ours, leaving the resonance
frequency almost completely independent of the charge distribution,
is described in the latter work cited. However, we have decided to
nevertheless use the term Kohn theorem due to its prevalence in the
field.

dependent local-density approximation. For example, the
finite wave-vector intersubband collective excitation spectra
in wide parabolic wells were obtained at low two-dimensional
electron densities, in Ref. [21]. It is important, however, to
develop a computationally feasible model of MSP absorption
which can correctly account for these effects in nonsquare
QWs in a way that is practical for nanodevice design, some-
thing which has thus far been lacking. In particular the
computational time is an important factor in device design.

For this reason, this work is focused on correctly incor-
porating the small in-plane nonparabolicity effect into the
semiclassical MSP model for PQW absorption. The experi-
mental data (Sec. III) come from a set of three PQW samples,
two of which were previously discussed in Ref. [1]. The
MSP energy of the samples has been measured in a multipass
absorption experiment over a range of different temperatures
from liquid helium to room temperature. The position of the
MSP peak, and more importantly its temperature shift, is
extracted with the help of the transfer matrix method. On the
theoretical side, we approach the system from the point of
view of the Kohn theorem, treating the “energy-locked MSP”
as a unperturbed system.

We then develop the theory in stages from there, produc-
ing three models of increasing sophistication. As a first step,
we employ a simple model, which takes into account only
the temperature variation of the material parameters, but still
works with ideally parabolic bands (Sec. II C). We refer to this
as the “parabolic model.” The second step takes into account
the calculated nonparabolicity of the energy bands but still
assumes that the corresponding wave functions are identical in
the whole momentum plane to these at the � point (Sec. II D).
We refer to this as the “hybrid model.” The third and ul-
timate approach uses the in-plane wave-vector-dependent
energies and wave functions of the eight-band �k · �p Hamilto-
nian (Sec. II E). We refer to this as the eight-band �k · �p model.

It should be noted that the parabolic model already existed
in the literature (Ref. [12]), although we do provide some
additional generalization to nonsymmetric QW systems. The
other two approaches extend this model to include in-plane
nonparabolicity, with significant new theoretical additions in
the eight-band �k · �p model. Further, it is shown that this full
model is the only one able to qualitatively (and quantitatively,
but with uncertainty coming from the limited knowledge of
the material parameters) predict the temperature shift of the
PQW systems. In particular, the in-plane parabolic model, in
which the temperature comes only through the variation of the
material parameters, leads in some instances to the opposite
prediction: i.e., a blueshift instead of a redshift of the MSB
energy as T increases.

We see the usefulness and the interest of our work primar-
ily in: (I) the successful application of the models—which
were in principle derived only/primarily with parabolic dis-
persions in mind—to the system, where the nonparabolicity is
of importance, and which is itself a breakthrough in the MBE
growth techniques, and (II) in the successful “gluing together”
in a coherent fashion the �k · �p and the ISB models, which
overcomes a series of difficulties: both methodological and—
primarily—of the computational complexity nature, with the
minimal set of the necessary approximations/simplifications.
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FIG. 1. Visualization of the experimental PQW systems studied here. The left panel shows the ∼3 THz system G0489/G0490 and the right
panel shows the ∼2.1 THz system G0643, in the absence of doping. The solid lines show the AlxGa1−xAs composition, x, as a function of
position in the growth direction. The dotted vertical lines show the position of the Si-δ doping layer.

II. METHOD

A. System

Though our theoretical model is quite general, we con-
sider some specific examples of parabolic quantum well
(PQW) systems in AlxGa1−xAs. We grew three PQW sam-
ples with molecular beam epitaxy (MBE), using a continuous
grading technique which allows the desired composition
profile to be followed precisely [22,23]. The first two
samples, G0489 and G0490, are PQW arrays designed to
have an absorption frequency around 3 THz. G0489 has 18
PQWs doped at 3 × 1011 cm−2 per well, and G0490 has
54 PQWs doped at 1 × 1011 cm−2 per well. The two struc-
tures are identical aside from the number of wells and
doping level. The PQWs in G0489/G0490 are formed from
continuously graded AlxGa1−xAs with composition ranging
in 0.02 � x � 0.30. As shown in Fig. 1 (left), the PQWs
are 103.8 nm wide, separated by 4/2/4 nm barriers of
Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As. Si doping is placed into
the GaAs region of the barrier to avoid the formation of
DX-centres and ensure ionization of the dopants [24]. The
absorption characteristics of G0489 and G0490 were studied
experimentally in Ref. [1].

The third sample, G0643, targets a lower frequency of
2.1 THz. This sample was, again, grown in continuously
graded AlxGa1−xAs, but with a lower barrier composition,
ranging in 0.02 � x � 0.20. As such, no doping wells were
used in this sample. G0643 includes a periodic array of
8 PQWs doped at 1 × 1011 cm−2 per well. The wells are
130.7 nm wide, separated by 20 nm Al0.2Ga0.8As barriers
(again, shown in Fig. 1).

B. The nextnano++ simulation

From the computational perspective, the process starts with
obtaining the eigenenergies En(z) and eigenfunctions ψn(z) of
the Schrödinger-Poisson equation system with the help of the
nextnano++ software, see Ref. [25]. Note that in the case of
the one-band parabolic model (Sec. II C), only the solution at
the � point is needed, as the wave functions do not depend
on �k‖ and the dependence of the energy is trivial, while in
the case of �k · �p simulation a custom �k‖-mesh is defined, as
described in Sec. II E. Periodic boundary conditions are used
in the growth z direction. The pseudomorphic strain of the
system is included in the calculation [26].

In the cases of the G0489 and G0490 samples (the 3 THz
system) the width of the periodic cell is WS = 113.8 nm
(QW + separation + doping well) and the grid spacing is
�z = 0.25 nm. The number of eigenstates taken into account
in the simulation is 17. The nextano++ default parameter
values were used, with the exception of the linear depen-
dence of bandgap on composition, which was adopted after
Ref. [27], slightly corrected for strain [(Eg)AlAs

T =0 = 2.9107 eV],
with a temperature-dependent bandgap and band-offset ratio
of 0.60 at zero temperature.3 The n-Si in GaAs doping is
introduced through a doping well with width of 2.0 nm per
period, assuming full ionization.

For the ∼2 THz system (sample G0642/G0643) the width
of the period is WS = 150.75 nm and the simulation includes
14 electron eigenstates. (Eg)AlAs

T =0 = 2.922 eV is used, with a
linear dependence of (Eg)T =0 on composition and band-offset
ratio of 0.60 at zero temperature, as previously described.
In the case of one-band and hybrid models the asymmetric
delta doping profile in introduced in the simulation as-is. In
the case of the �k · �p model, the doping profile needed to be
symmetrized, resulting in WS = 153 nm.

In the simulation for the eight-band �k · �p model, (Eg)AlAs
T =0 =

2.922 eV is used; 20 electron wave functions and 16 hole ones
are included; the doping well potential is omitted4 and the
default S = 1 rescaling is used to avoid spurious solutions.

C. ISB formation: the parabolic model

In this section, we present the semiclassical Alpeggiani-
Adreani model of the ISB formation of Ref. [12]—henceforth
AA—which is the starting point for our analysis of the ISB
formation. The model is used as-is within the parabolic ap-
proximation and is a basis for further development of the

3Note that the exact band-offset ratio has remained difficult to pin
down exactly experimentally. See, for example, the wide range of
offsets reported in Ref. [28].

4The wave functions are generally localized entirely in the
parabolic QW or in the doping well, due to their separation. However,
hybridization can happen in the case of a coincidental degeneracy for
a given n and �k‖. As the �k · �p model model requires following which
orbital is which, it is easier to remove the doping well, taking into
account it had a small impact on the QW solutions anyway.
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hybrid (Sec. II D) and the �k · �p (Sec. II E) ones. Please note
that a more detailed and more general derivation is provided
in Appendix B.

We start by defining the nonlocal susceptibility in the
growth z direction χzz(ω, q; z, z′) by the following relation
between the electric E and the displacement D fields:

Dz(z) = ε0εs + ε0

∫
χzz(ω, q; z, z′)Ez(z′)dz′, (1)

with εs the static permittivity of the semiconductor in the
absence of doping, and

χzz(ω, q; z, z′) =
∑

α

χα (ω, q)ξα (z)ξα (z′), (2)

where ω, q are the frequency and wave vector of the transition,
respectively, and the index α ≡ n → m stands for the transi-
tion from subband n to subband m.5 The ξα’s are called ISB
transition current densities, and they are defined by

ξα (z) = h̄e

2m∗(z)
[ψm(z)∂zψn(z) − (∂zψm(z))ψn(z)], (3)

where ψn(z) are the envelope eigenvectors of the one-band
Schrödinger-Poisson equation system, assumed to be real,
and m∗ is the effective mass. The single-particle susceptibility
χα (ω), in the long wavelength limit q→0, is given by

χα (ω) = − 1(
ω + iγ IB

2

)2

4

ε0 h̄ωαs

∑
�k‖

� fα (�k‖)

×
[

1 + ωα (�k‖)ωα (0)(
ω + iγ IB

2

)2 − ωα (�k‖)2

]
(4)

where ωα (�k‖) = Em(�k‖) − En(�k‖) is the transition energy from
subband n → m at in-plane wave vector �k‖, and � fα (�k‖) =
fn(�k‖) − fm(�k‖) is the difference in Fermi occupation proba-
bility. s is the in-plane surface area.

Please note here that the broadening parameter γ IB is artifi-
cially introduced to the model by evaluating the susceptibility
at ω → ω + iγ IB/2. In principle, γ IB

α,�k‖,T
would be the FWHM

of each individual intersubband oscillator α at �k‖ position in
the wave-vector space and at temperature T . However, taking
into account all this variability leads to enormous number of
arbitrarily valued parameters. One could argue that, in prin-
ciple, γ could be calculated theoretically [29,30], but since
certain scattering mechanisms like interface roughness will be
MBE growth-dependent, this is practically quite challenging.
In this work, to keep things simple, a transition-independent
and �k‖-isotropic parameter is used, dropping the α, �k‖ indices.
Furthermore, in the case of the parabolic model as well as in
the case of the hybrid one (see Sec. II D) the γ IB of individual
transitions translate directly to the resulting linewidth of the

5In AA the corresponding notation is α ≡ n → n′; however, there
is also the α′ index. While we tried to mimic the notation of that
work as far as possible, for ease of the reference of the reader, we
use α ≡ n → m and α′ ≡ n′ → m′. This also allows us to use the
α′, β ′, σ ′, k′

‖ set of indices in a consistent way below.

ISB peak, with no coupling between this parameter and the
frequency of the absorption maximum. This means that it is
here an external parameter to the model and the model cannot
be used to study, i.e., the linewidth dependence on temper-
ature, quantum well size or sample doping. Consequently,
we focus on the frequency of the absorption maximum in
this work. This also means that we can use any reasonable
nonzero value of γ IB and the T index can also be dropped. The
situation is different in scope of the eight-band �k · �p model;
see the discussion of the Eq. (26) in Sec. II E.

Assuming that the subbands are twofold spin-degenerate
and isotropic in-plane, one obtains

χα (ω) = − 1(
ω + iγ IB

2

)2

4

ε0h̄ωαπ

∫ ∞

0
� fα (k‖)

×
[

1 + ωα (k‖)ωα (0)(
ω + iγ IB

2

)2 − ωα (k‖)2

]
k‖dk‖. (5)

Solving the Maxwell’s equations for TM waves in a lay-
ered structure, with a quantum well layer sandwiched inside
a metal-insulator-metal (MIM) cavity [31–39] and assuming
εxx = εyy = ε‖, one shows that the Dz field within the QW
region obeys the integro-differential equation:

(
∂2

z + k2
z

)
Dz = −

∑
α

χα (ω, qx )

εs
ξα (z)

∫
ξα (z′)

× (
∂2

z′ + εxxk2
0

)
Dz(z′)dz′, (6)

where kz is defined by

k2
z = ε‖k2

0 − ε‖
εs

q2
‖, (7)

with k2
0 = ω2/c2 and q‖ being the in-plane wave number.

The general solution to this equation has the form

Dz(z) = A cos(kzz) + B sin(kzz)

+ q2
‖
∑

α

χα

εs

(
AF A

α + BF B
α

) ∫
ξα (z′)g(z, z′)dz′, (8)

where A, B are arbitrary coefficients which will be determined
by the boundary conditions of the layer. g(z, z′) is the Green’s
function sin(kz|z − z′|)/2kz. The F A

α , F B
α coefficients can be

calculated through the following matrix relationships:

F A
α = CA

α −
∑
α′

χα′

εs
F A

α′ [Iα,α′ + q2
‖Dα,α′ ], (9)

F B
α = CB

α −
∑
α′

χα′

εs
F B

α′ [Iα,α′ + q2
‖Dα,α′ ], (10)

with

Iα,α′ =
∫

ξα (z)ξα′ (z)dz,

CA
α = ε‖

εs

∫
cos(kzz)ξα (z)dz,

CB
α = ε‖

εs

∫
sin(kzz)ξα (z)dz,

Dα,α′ = −ε‖
εs

∫
ξα (z)g(z, z′)ξα′ (z′)dzdz′. (11)
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From these, it is possible to calculate the transfer matrix for
the QW region. Unlike in AA, we have not assumed symmetric
quantum wells, and we have not assumed that ε‖ = εs.

Taking advantage of the long-wavelength limit
(qx, k0, kz ≈ 0) allows us to define an effective local
permittivity for the QW stack. Intuitively, since the electric
field is approximately constant on the scale of a single QW,
we are able to replace each QW period with an effective
medium.

The basic approach (see Ref. [3]), is to take an average of
the Dz and Ez fields over a single QW period of length L. Then,
the effective permittivity (in the z direction) is given by

εzz,eff = 〈Dz〉
ε0〈Ez〉 ≈ εs

[
1 −

∑
α

χα

ε‖
F A

α 〈ξα〉
]−1

, (12)

where 〈·〉 denotes an average over the entire QW region in the
z direction:

〈ξα〉 = 1

L

∫
ξα (z)dz, (13)

where L is the thickness of the quantum well region. Further-
more, since we are using the long-wavelength limit, we can
use that to simplify our equation for the F A

α ’s to

F A
α ≈ L〈ξα〉 −

∑
α′

χα′

εs
F A

α′ Iα,α′ ≡
∑
α′

Cα,α′F A
α′ . (14)

From the QW transition current densities, ξα (z), we solve
the matrix Eq. (14) to get the F A

α coefficients, from which we
can calculate the effective permittivity εzz,eff.

D. ISB formation: The hybrid model

In the scope of the hybrid model, the dependence of the
wave functions on �k‖ is omitted, but the �k‖ dispersion is par-
tially taken into account by using a mixture of effective mass
and three-band �k · �p modeling. Following Warburton et al.
[11], the subband energy dispersion En(k‖) is given implicitly
by

Ĥhψn(z) = En(k‖)ψn(z), (15)

with

Ĥh = − h̄2

2m∗(z)
k2
‖ − ∂z

h̄2

2m∗(z)
∂z + Eg(z) − δ(z), (16)

and

1

m∗(z)
= EP

3me

[
2

En(k‖) + δ(z)
+ 1

En(k‖) + �(z) + δ(z)

]

+ (1 + 2F ). (17)

Here me is the bare electron mass. Eg, EP, F,�, δ, and F are
the band gap, Kane energy, F -parameter, spin-orbit splitting
and valence band offset, respectively. The values of the pa-
rameters are taken from Ref. [28].

Instead of solving the Schrödinger-Poisson system self-
consistently using Ĥh of Eq. (16), we assume that the wave
functions calculated in the self-consistent one-band effec-
tive mass approximation are reasonably close to the actual
wave functions. Given the effective mass wave functions,

ψn(z), we can then estimate the three-band �k · �p dispersion
by choosing En(k‖) so that it minimizes the overlap error∫

[ψ∗
n (z)Hhψn(z) − En(k‖)|ψn(z)|2]dz. (18)

We confirmed that, while this approach does not give us the
full wave-function spinors, it at least gives a good approx-
imation of the subband energy dispersions, as long as one
is concerned with a single �k‖ orientation along [100]/[010]
without the spin degeneracy of orbitals being lifted.

The resulting energy dispersions are used in Eqs. (5), then
Eq. (14), and finally Eq. (12).

E. ISB formation: The eight-band�k ·�p model

The model that follows is our generalization of AA,
which takes into account nonparabolicity by including the
�k‖-dependence of both the eigenenergies En,�k‖ and the eigen-
functions ψn,�k‖ . Apart from the orders of magnitude larger
computational complexity, the main challenges of the exten-
sion of the model come from these sources: (I) The simple
kz-dependent definition of the transition current densities—
see Eq. (3)—does not work for the eight-component ψn,�k‖ , so
a new definition needs to be provided, which we base on the
proper definition of the probability current density, presented
in Sec. II F; (II) the transition current densities are nontrivially
complex,6 which renders several approximations in AA invalid
(see Appendices D and F); (III) the simple one-band notion of
an scalar effective mass m∗ of an electron, as present, e.g., in
AA, cannot be used.

This section contains the presentation of the model.
Where possible, the parallels and the differences between
our model and AA are indicated and briefly discussed. For
the in-depth discussion, which may require earlier reading
or simultaneously following significant external material, see
Appendices D, E, and F.

The Schrödinger-Poisson equation system is solved self-
consistently with the help of nextnano++ software in the
scope of the eight-band �k· �p model. The computational process
is largely kept default, but uses the linear bandgap to com-
position relation plus the valence band offset re-calibration,
as described previously in Sec. II B, and also the custom-
defined �k‖ mesh, as follows. The output: eigenenergies En,�k‖

and eigenfunctions ψn,�k‖ are obtained on a �k‖-space mesh with
11 mesh points along each of two directions n̂, [100] and
[110], and mesh spacing dk‖ = 0.05 nm−1, starting from the
� point.

For a nanosystem, which is itself symmetric with respect to
reversing the z axis, realized in material of zinc-blende crystal
structure each octant of the k‖ space is equivalent. Hence,
any sum over the k‖ space can be reduced to sum over sin-
gle octant. Due to computational complexity, we effectively
represent the relevant octant by an average of its two limiting
lines:

∑
k‖ → 1

2

∑
n̂,k‖ , where n̂ ∈ {[100], [110]}.

6By “nontrivially complex” we mean that they cannot be made real-
valued by any set of phase rotations.
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In our model, the eigenfunctions ψn,�k‖ are represented in

the Bloch basis �U of

�U = (∣∣S,− 1
2

〉
,
∣∣S,+ 1

2

〉
,
∣∣ 3

2 ,+ 1
2

〉
,
∣∣ 3

2 ,+ 3
2

〉
,∣∣ 3

2 ,− 3
2

〉
,
∣∣ 3

2 ,− 1
2

〉
,
∣∣ 1

2 ,− 1
2

〉
,
∣∣ 1

2 ,+ 1
2

〉)
, (19)

where∣∣∣∣S 1

2
,−1

2

〉
= |S↓〉,

∣∣∣∣S 1

2
,

1

2

〉
= |S↑〉,

∣∣∣∣3

2
,

3

2

〉
= i√

2
(|X↑〉 + i|Y ↑〉),

∣∣∣∣3

2
,−3

2

〉
= −i√

2
(|X↓〉 − i|Y ↓〉),

∣∣∣∣3

2
,

1

2

〉
= −i√

6
(|X↓〉 + i|Y ↓〉) + i

√
2

3
|Z↑〉,

∣∣∣∣3

2
,−1

2

〉
= i√

6
(|X↑〉 − i|Y ↑〉) + i

√
2

3
|Z↓〉,

∣∣∣∣1

2
,−1

2

〉
= −i√

3
(|X↑〉 − i|Y ↑〉) + i√

3
|Z↓〉,

∣∣∣∣1

2
,

1

2

〉
= −i√

3
(|X↓〉 + i|Y ↓〉) − i√

3
|Z↑〉, (20)

with the spin quantization axis oriented along the growth
direction z. The k‖ index refers to the corresponding mesh
point of the in-plane quasimomentum and the quantum num-
ber n refers to the spin-orbitals of the subbands as ordered by
their energy around � point. The intersubband transitions are
described by α = (n, m), where m > n, m and n have the same
spin orientation and adjacent orbitals.

It was pointed out in the last paragraph of the Sec. II C
that the model is solved in the following sequence: transition
current densities ξα (z) → matrix Cα,α′ → F A

α coefficients →
effective permittivity εzz,eff. The same order applies in this
case and the first step of the calculation is to obtain the inner
functions and matrix elements of a new �k · �p-compatible prob-
ability current operator Ĵz (which is itself defined in Sec. II F):

Jn̂
α,1,k‖ (z) = ψ n̂

n,k‖ (z)Ĵz
[
ψ n̂

m,k‖ (z)
]∗ − [

ψ n̂
m,k‖ (z)

]∗
Ĵzψ

n̂
n,k‖ (z),

Jn̂
α,2,k‖ (z) = [

Jn̂
α,1,k‖ (z)

]∗
; Jn̂

α,1,k‖ =
∫

Jn̂
α,1,k‖ (z)dz, (21)

which are analogous to ξα (z) in AA. For more details on the
ξα (z) → Jn̂

α,σ,k‖ (z) substitution, see discussion in Appendix E.
The σ index, which is absent in AA, is a result of the
nontrivially complex wave functions—and transition current
densities, as explained later in Appendix D—compare the two
contributions in Eqs. (D1) and (D2). The next step is to obtain
the intertransition current elements

I n̂
α,σ,k‖,α′,σ ′,k′

‖
=

∫
Jn̂
α,σ,k‖ (z)

[
Jn̂
α′,σ ′,k′

‖
(z)

]∗
dz, (22)

which are analogous to Iα,α′ in AA. In the two last equa-
tions n̂ ∈ {[100], [110]} and both k‖ and k′

‖ are oriented
along n̂.

It is convenient to define a new index β = (α, σ ), where
σ ∈ {1, 2} and

Jn̂
β,k‖ ≡ Jn̂

α,σ,k‖ ; I n̂
β,k‖,β ′,k′

‖
≡ I n̂

α,σ,k‖,α′,σ ′,k′
‖
, (23)

and to introduce

Ĩ n̂
β,k‖,β ′,k′

‖
=

I n̂
β,k‖,β ′,k′

‖

Jn̂
β,k‖

(
Jn̂
β ′,k′

‖

)∗ . (24)

We want our model to be a simple extension of AA and as
analogous to that model as reasonably possible. Please note
that there are no k‖-dependent terms in Eq. (14)—only the
k′
‖-dependent ones are present, implicitly, through the sum in

Eq. (4). To eliminate the k‖ index, in the further calculation
we will use the Ĩβ,β ′,k′

‖ elements, which are averaged over
the k‖ space, with the (n, m) occupation difference serving
as the weight—or alternatively the Ĩβ,β ′ elements, averaged
symmetrically over both k‖ and k′

‖ spaces (see Appendix D
for the discussion of the two ways of averaging):

Ĩ n̂
β,β ′,k′

‖
=

∑
k‖ Ĩ n̂

β,k‖,β ′,k′
‖
� f n̂

β,k‖k‖dk‖∑
k‖ � f n̂

β,k‖k‖dk‖
,

Ĩ n̂
β,β ′ =

∑
k′
‖
� f n̂

β ′,k′
‖
Ĩ n̂
β,β ′,k′

‖
k′
‖dk′

‖∑
k′
‖
� f n̂

β ′,k′
‖
k′
‖dk′

‖
, (25)

where � f n̂
β,k‖ = f n̂

k‖,n − f n̂
k‖,m and f n̂

k‖,n ≡ f (En̂
k‖,n, T ) is the

Fermi-Dirac distribution function. Please also note that it is
the necessity of this averaging which leads us to use Ĩ n̂

β,k‖,β ′,k′
‖

of Eq. (24) instead of I n̂
β,k‖,β ′,k′

‖
, as it turned out in practice that

the dependence of the former on k‖ is weaker than that of the
latter.

The left-hand side matrix, corresponding to the Cα,α′ in
Eq. (14) of the parabolic model, is derived in Appendix D,
and defined as follows:

C̃β,β ′ = δβ,β ′ − 4

ω2εs

∑
n̂,k′

‖

X n̂
β ′,k′

‖
Jn̂
β ′,k′

‖

(
Jn̂
β ′,k′

‖,
)∗

Ĩ n̂
β,β ′,k′

‖
k′
‖dk‖′,

X n̂
β ′,k′

‖
=

−p(β ′) f n̂
k′
‖,ν(β ′ )

E
+

1
2� f n̂

β ′,k′
‖

p(β ′)
(
ω + i

2γ IB
T

) − ωn̂
β ′,k′

‖

,

(26)

where ωn̂
β ′,k′

‖
= En̂

k′
‖,m′ − En̂

k′
‖,n′ is the transition energy from

subband n′ → m′ at in-plane wave vector �k′
‖, the p(β ) ≡

p(σ ) = −1σ , ν(β ) ≡ ν(σ ) = (σ − 1)m′ + (2 − σ )n′, and E
can be either En̂

k′
‖,m′ − En̂

k′
‖,n′ or E�,m′ − E�,n′ , depending on the

version of the model (see below).
For a moment we will focus our attention on Eq. (26)

and how it compares to Eq. (14). First, one should take into
account the straightforward renormalization of Eq. (D3), done
to allow us to work with Eq. (24), which leads to Eq. (D5)
and dimensionless: F̃ coefficients and C̃ matrix. Second, the
sum over �k′

‖ space, implicitly present in Eq. (14) through the
χα definition Eq. (4), in our case is taken outside the now
�k′
‖-dependent J and I quantities. The X part corresponds to

the part of χα under this summation, but again one needs
to remember that the p and ν symbols, dependent on the σ
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index, come from nontrivially complex wave functions—and
transition current densities, see the corresponding minus signs
and occupation index changes between the two components of
Eqs. (D1) and (D2) in Appendix D. Finally, the simple relation
between the wave functions, energies and effective mass of
parabolic model cannot be directly used, which prompted us
to postulate the two versions of the E expression, see the
discussion in Appendix F 4.

Let us now digress a little bit and focus on the role of the
homogeneous broadening in this model. To do so, we need
to refer to some conclusions drawn from the results we have
already obtained and will be later discussed in Sec. IV. In
Eq. (26) the sum over �k‖ space is done over both �k‖-dependent
transition energies ωn̂

β ′,k′
‖

and the �k‖-dependent transition cur-

rent densities, as a consequence of taking into account both the
�k‖-dependence of the eigenenergies and of the eigenfunctions.
Thus the γ IB

T parameter and the frequency of the absorption
maximum are coupled in the eight-band �k · �p model, with
increasing γ IB

T leading to a small redshift in that frequency,
keeping other parameters constant. This means that in prin-
ciple, contrary to the parabolic and the hybrid models, the
temperature dependence of γ IB

T needs to be known. In prac-
tice, however, it was confirmed that this linewidth increase →
redshift dependence is small and certainly does not account
for most of the redshift observed experimentally given the
linewidth increase measured. In addition to that, the relation
between the γ IB

T and the resulting FWHM of the ISB peak
is not longer 1:1. In this model the relation is linear with
FWHMISB = aγ IB

T + b, where a �= 1 and b �= 0, which is a
sign of some additional �k‖-dependent dynamics in the combi-
nation of the individual intersubband absorption peaks while
forming the ISB plasmon one. However, taking into account
all of that, we decided to treat the γ IB

T as an approximately free
parameter.

If using the two-dimensional k‖ and k′
‖ averaging of tran-

sition current densities, then one should replace Ĩ n̂
β,β ′,k′

‖
with

Ĩ n̂
β,β ′ in Eq. (26).

Finally, the following system of linear equations can be
solved:

C̃β,β ′ F̃β ′ = [1, 1, ..., 1], (27)

and εzz can be obtained from the solution �̃F is as follows:

ε−1
zz = 1 + 4

Lω2εs

∑
β,k‖,n̂

X n̂
β,k‖J

n̂
β,k‖

(
Jn̂
β,k‖

)∗
F̃βk‖dk‖. (28)

F. Probability current operator

To get the correct operator for the z component of proba-
bility current, Ĵz, the technique of Ref. [40] is employed on
the �k · �p Hamiltonian defined as in Ref. [41]. The derivation
in Ref. [40], leads to conclusion, that the Ĵα can be obtained
the following way:

Ĵα = 1

h̄

∂Ĥ

∂kα

. (29)

Please note that the explicit equations for Ĵx, and Ĵy, Eqs. (18a)
and (18b) in Ref. [40], contain a few typographical errors

and are inconsistent with this formula. However, its validity
is confirmed, e.g., in Eq. (18) of Ref. [42], which gives the
very useful “sum rule”:

(ĤK ) j j′ = h̄

2
�̂Jj j′ · �k, (30)

where ĤK is the kinetic part of the Hamiltonian. The simpler
version of the �k · �p Hamiltonian:

Ĥ1 = �p2

2m0
+ V0(�r) + h̄2�k2

2m0
+ h̄

m0

�k · �p

+ h̄

4m2
0c2

(∇V0) × �p · �σ , (31)

is considered, omitting the h̄2

4m2
0c2 (∇V0) × �k · �σ term. Apply-

ing the Eq. (29) to Hamiltonian Ĥ1 spanned on the basis
of Eq. (19) leads to matrix presented in Table I. The sym-
bols S, B, P0 stand for corresponding Kane parameters and
γ1, γ2, γ3 stand for modified Luttinger parameters. The in-
plane wave components are defined: k± = kx ± iky, so in the
case of [100] direction k± = k‖ and for [110] direction: k± =
1±i√

2
k‖.

G. �k ·�p parameters of the model

The values of the �k · �p parameters used in this model are
presented in Table II.

The following transformation of the Luttinger γ parame-
ters is used from the 6×6 Hamiltonian values to the 8×8 ones,
according to the work of Pidgeon and Brown, Ref. [44]:

γ 8×8
1 = γ 6×6

1 − EP

3Eg
, γ 8×8

2 = γ 6×6
2 − EP

6Eg
,

γ 8×8
3 = γ 6×6

3 − EP

6Eg
. (32)

In the formula above, the energy gap Eg is dependent on
temperature according to the Varshni formula, Ref. [45]:

Eg(T ) = Eg(T = 0) − αT 2

β + T
. (33)

Moreover, if the S parameter is set to a value different from the
default S0 to avoid spurious solutions, then the Kane energy
EP needs to be rescaled from the default value E0

P as follows:

EP(T ) = E0
P − Eg(T )(Eg(T ) + �)

Eg(T ) + 2
3�

(S − S0), (34)

which makes EP also dependent on temperature, please com-
pare Eqs. (3.62), (3.158), and (3.159) in Ref. [26]. Usually,
the values of either S = 0 or S = 1 are used.

In the original AA, the probability currents are mediated
by the kinetic momentum operator, which is proportional to
k̂z with the proportionality constant h̄

m0m∗ . This corresponds to

the [1,1] and [2,2] elements of the Ĵz operator in Table I, i.e.,
h̄

m0
S k̂z, which are the diagonal components of the Ĵz operator

matrix for the |S,± 1
2 〉 Bloch states. The other nonzero ele-

ments in Table I exist due to conduction-valence band mixing.
Of these, the ones that affect the conduction bands directly
(first two rows/columns in Table I) are proportional to either
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TABLE I. The Ĵz z component of probability current operator for Ĥ1 Hamiltonian.

|S 1
2 , − 1

2 〉 |S 1
2 , 1

2 〉 | 3
2 , 1

2 〉 | 3
2 , 3

2 〉 | 3
2 , − 3

2 〉 | 3
2 ,− 1

2 〉 | 1
2 , − 1

2 〉 | 1
2 , 1

2 〉

〈S 1
2 , − 1

2 | h̄
m0

S k̂z 0 1√
6

B
h̄ k− 0 − 1√

2
B
h̄ k+ −

√
2
3

P0
h̄ − 1√

3
P0
h̄

1√
3

B
h̄ k−

〈S 1
2 , 1

2 | 0 h̄
m0

S k̂z −
√

2
3

P0
h̄ − 1√

2
B
h̄ k− 0 1√

6
B
h̄ k+ − 1√

3
B
h̄ k+ 1√

3
P0
h̄

〈 3
2 , 1

2 | 1√
6

B
h̄ k+ −

√
2
3

P0
h̄ − h̄ (γ1+2γ2 )

m0
k̂z −√

3 h̄ γ3
m0

k+ 0 0 3√
2

h̄ γ3
m0

k− 2
√

2 h̄ γ2
m0

k̂z

〈 3
2 , 3

2 | 0 − 1√
2

B
h̄ k+ −√

3 h̄ γ3
m0

k− − h̄ (γ1−2γ2 )
m0

k̂z 0 0 0
√

3
2

h̄ γ3
m0

k−

〈 3
2 , − 3

2 | − 1√
2

B
h̄ k− 0 0 0 − h̄ (γ1−2γ2 )

m0
k̂z

√
3 h̄ γ3

m0
k+

√
3
2

h̄ γ3
m0

k+ 0

〈 3
2 , − 1

2 | −
√

2
3

P0
h̄

1√
6

B
h̄ k− 0 0

√
3 h̄ γ3

m0
k− − h̄ (γ1+2γ2 )

m0
k̂z −2

√
2 h̄ γ2

m0
k̂z

3√
2

h̄ γ3
m0

k+

〈 1
2 , − 1

2 | − 1√
3

P0
h̄ − 1√

3
B
h̄ k− 3√

2
h̄ γ3
m0

k+ 0
√

3
2

h̄ γ3
m0

k− −2
√

2 h̄ γ2
m0

k̂z − h̄ γ1
m0

k̂z 0

〈 1
2 , 1

2 | 1√
3

B
h̄ k+ 1√

3
P0
h̄ 2

√
2 h̄ γ2

m0
k̂z

√
3
2

h̄ γ3
m0

k+ 0 3√
2

h̄ γ3
m0

k− 0 − h̄ γ1
m0

k̂z

Bk± or the Kane parameter P0 = h̄
√

EP
2m0

. At the vicinity of

the � point the former ones vanish, leading to the interplay
between the S and P0 as the dominating factors of the proba-
bility current dynamics.

Using the S = 1 renormalization in nextnano++ is nec-
essary to avoid spurious solutions. However, it was verified
that neither using S = 1 nor S = S0 works in our ISB model,
with the first one completely underestimating and the latter
one completely overestimating the magnitude of the current
elements. This is not unexpected, as the S = 1 renormalization
changes the mentioned dynamic between S and P0 in a way
that may yield correct eigen-solutions for Ĥ but not for Ĵz as
defined in Eq. (29).

Introduction of some effective parameter, which we will
call A, is necessary as the correction to the S ↔ P0 balance.
We postulate it as a material-structural parameter, in a sense
that we hope that one fitted value of A will work for a suf-
ficiently broad class of structurally similar systems realized
in the same materials. This assumption will be tested in the
Sec. IV by a comparison with the experimental data and the
simpler versions of the ISB formation model.

We postulate a scalar A governing the renormalization of
the parameters as follows. In the case of A = 0 the default �k· �p
values of S = S0 = −2.88 for pure GaAs and S = S0 = 0.04
for pure AlAs are used (see Table II) with linear interpolation.

TABLE II. The values of the �k · �p parameters.

Parameter GaAs value AlAs value Units Source

Eg(T = 0) 1.519 3.099 eV Ref. [28]
α 0.5405 0.885 meV/K Ref. [28]
β 204 530 K Ref. [28]
S0 −2.88 0.04 1 Ref. [28]
m∗ 0.067 0.15 1 Ref. [28]
E 0

P 28.8 21.1 eV Ref. [28]
� 0.341 0.28 eV Ref. [28]
B 3.9895 2.7955 hartree ∗ bohr2 Ref. [43]
γ 6×6

1 6.98 3.76 1 Ref. [28]
γ 6×6

2 2.06 0.82 1 Ref. [28]
γ 6×6

3 2.93 1.42 1 Ref. [28]

On the other end of the spectrum, for A = 1, the reverse of
the single-band effective mass is used: S = 1

m∗ = 1
0.067 for

pure GaAs and S = 1
m∗ = 1

0.15 for pure AlAs, also with lin-
ear interpolation. The corresponding Kane energies, at zero
temperature, are equal to EP = E0

P for A = 0 and EP = 0 for
A = 1, see Eq. (34).

III. MULTIPASS ABSORPTION MEASUREMENT

As in Ref. [1], THz absorption measurements were per-
formed in a multipass geometry with 45◦ facets [the same
geometry shown in Ref. [46], Fig. 7(a)]. The samples were
placed inside a continuous-flow cryostat specifically de-
signed to fit the tight space inside the chamber of a Fourier
transform infrared spectrometer. Polarized THz light from
the FTIR thermal globar source (Silicon carbide) was fo-
cused at the input facet of the sample. The transmitted light
was detected with a liquid-Helium cooled Silicon bolome-
ter. Since the quantum wells only absorb TM (transverse
magnetic)-polarized light, a TE (transverse electric)-polarized
measurement was used as a reference. The ratio of the TM
spectra to the TE spectrum provides the quantum well ab-
sorption, after correction for the source elliptical polarization.
Note that, in the case of high temperatures T > 200 K for
the G0643 sample, the signal-to-noise ratio was too small to
unambiguously identify the frequency of the absorption maxi-
mum. (This sample had fewer quantum wells compared to the
other samples, and thus yields a weaker overall absorption.)

The derivation of our mathematical model for multi-
pass absorption through a quantum well is presented in
Appendix C. The frequencies of the ISB plasmon absorption
peak maxima and the corresponding FWHM obtained with the
help of that model are shown in Table III.

IV. RESULTS

A. Temperature dependence of the frequency of absorption
maximum for each of the samples

As explained in Sec. II G, the eight-band �k · �p model (see
Sec. II E) uses the introduced A parameter, which needs to
be fitted. Our intention was to use experimental data for one
sample to fit this parameter and to test the performance of
thus calibrated model on other two samples. We designated
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TABLE III. The frequencies (the F columns) and the corresponding FWHM (the L columns) of the ISB plasmon absorption peak maxima
in THz versus the measurement temperature in K from the multipass absorption experiment. The G0490I and G0490II columns are for the first
and the second independent measurements of the G0490 sample. Please note that the data in columns G0490I and G0489 were presented first
in Ref. [1].

Temperature G0490I – F G0490I – L G0490II – F G0490II – L G0489 – F G0489 – L Temperature G0643 – F G0643 – L

10 2.939 0.110 2.935 0.164 4 2.193 0.086
78 2.891 0.117 2.888 0.182 2.845 0.355 8 2.188 0.088
100 2.876 0.141 2.873 0.214 2.833 0.379 15 2.186 0.089
150 2.850 0.239 2.842 0.287 2.812 0.435 40 2.169 0.099
200 2.832 0.371 2.822 0.405 2.790 0.642 60 2.145 0.108
250 2.811 0.535 2.803 0.555 2.776 0.732 80 2.128 0.122
293 2.791 0.715 2.777 0.711 2.779 0.813 100 2.111 0.148

150 2.075 0.241
200 2.050 0.273

the G0490 sample as a fit sample as it is the system with
the best performance in terms of the linewidth, while the
G0489 and G0643 samples were designated as test samples
(see Sec. II A for a detailed description of the samples). The
parameter was fitted in respect to the data-set consisting of
6 frequencies of the absorption peak maxima obtained from
the multipass absorption experiment (see Table III) of G0490
for T ∈ (75, 300) K, averaged between the two independent
measurements.

Because we use these data for a posteriori calibration, the
measured FWHM values at each temperature were used as a
reference for the γ IB

T parameter in Eq. (26). Conversely, we
do not assume to know the correct temperature dependence
of γ IB

T in the test cases, beyond general range of relevant
values. This situation corresponds to a setup in which the
model would be put to a practical use: predicting the char-
acteristics of a proposed system, the growth of which we are
only considering. To keep things simple, in the test cases we
use constant γ IB corresponding to experimental FWHM at
T = 78 K, which allows us to avoid introducing additional
error from a supposedly off guess, while still not putting the
γ IB

T = f (T ) as a given.
The effective permittivity εzz,eff was calculated for differ-

ent values of A, from which the frequency of the absorption
maximum was obtained. The value A = 0.7336 minimizes
the total squared error of the predicted frequencies in re-
spect to the measured ones in the relevant temperature range.
Please note that, as has been explained in Sec. II G, A = 0
means that the default �k· �p values of S and EP are used, while
for A = 1, the reverse of the single-band effective mass is
used: S = 1

m∗ and EP = 0. The fitted A = 0.7336 might be
interpreted as a significant shift toward greater impact of
the parabolic-model-like kinetic term and lower impact of
the conduction-valence band mixing in the transition current
densities. However, caution must be taken, as this is a correc-
tion to the Schrödinger-Poisson results that were themselves
obtained with S = 1 renormalization.

The experimental points are marked in Fig. 2 with black
circles, with (a) corresponding to the test sample. The fre-
quencies of the absorption peak maxima for the eight-band
�k · �p model with fitted A are presented in Fig. 2 by the blue
squares. The corresponding values yielded by the parabolic
(see Sec. II C) and the hybrid (see Sec. II D) models are shown

by green pointing-up triangles and by red pointing-down tri-
angles, respectively. The experimental and the eight-band �k · �p
points are accompanied by error bars. In case of the measured
values, they come from the finite frequency resolution of the
experiment in Figs. 2(a)–2(c). Additionally, as the sample
G0490 was measured twice over the whole range of tem-
peratures, the difference between the obtained frequencies at
each temperature also contributed to the uncertainty. In case
of the eight-band �k · �p points the bars show an estimate of the
variation of the model predictions depending on the 1D versus
2D averaging of Ĩ n̂

β,k‖,β ′,k′
‖

[see Eq. (25) and discussion in

Appendix D] and the E = En̂
k′
‖,m′ − En̂

k′
‖,n′ versus E = E�,m′ −

E�,n′ variants [see Eq. (26) and discussion in Appendix F 4].7

Moreover, the Schrödinger-Poisson system was solved twice
with the help of two versions of nextnano++ in the case of
G0490 sample to control for the imperfect convergence of
the self-consistent simulation. This gave a small additional
contribution in that case.

In Fig. 2(a), it can be seen that of the three models con-
sidered, the parabolic model does the worst job in describing
the experimental data. Not only are the differences between
the measured and predicted frequencies of the absorption
maxima the biggest at each temperature, but also their general
trend versus temperature is reversed: increasing T results in a
redshift as observed experimentally, but the parabolic model
predicts a blueshift. With the inclusion of the nonparabolic
dispersion in the scope of the hybrid model, the prediction gets
better, with all the predicted peak positions moving toward
lower frequencies. Moreover, the temperature trend changes
to a neutral one. Finally, the data points are visibly best de-
scribed by the eight-band �k · �p model, both on a level of the
individual frequencies, as well as in respect to the temperature
redshift that this model predicts.

To quantify the mentioned trends, the average slope of
frequency of the absorption maximum versus temperature

7To be specific, the predicted frequency spread at each temper-
ature was calculated and—as they seem to variate erratically with
temperature—the largest one was used for a given sample. In prac-
tice, we found that the impact of the averaging mode is negligible in
comparison to the E one.
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FIG. 2. The dependence of frequency of the absorption maximum on temperature for: (a) G0490, (b) G0489, and (c) G0643. The black
circle points show the multipass measurement values, the green pointing-up triangles represent the parabolic model predictions, the red
pointing-down triangles—the ones of the hybrid model and the blue squares—of the eight-band �k · �p model. The lines show the linear fits
to the data points from which the average slopes were obtained (see text). The black error bars come from the experimental uncertainty
estimate, while the blue ones from the differences between 1D vs 2D averaging and the E variants of the �k · �p model.

was calculated for the experimental data as well as for the
predictions of the three models of Fig. 2(a). The slopes
are: −0.46 GHz

K for the experiment, 0.19 GHz
K for the parabolic

model, −0.07 GHz
K for the hybrid model and −0.43 GHz

K in case
of the eight-band �k · �p model. Please note that the slope of the
last model is quite close to the one of the experimental data,
while the parabolic and the hybrid models yield a reversed
(positive) and a neutral slope, respectively.

The validity of the A = 0.7336 fit itself is thus confirmed
in Fig. 2(a), as there is a value of this scalar parameter which
predicts reasonably well the frequencies of the absorption
maxima for all temperatures in the range T ∈ (75, 300) K—
which was not a given at all in the first place. But this does
not inform us about the applicability of the A as a postulated
material-structural parameter, that is if it will work reasonably
well for other systems of a similar structure. To check this, in
Figs. 2(b) and 2(c) the frequencies of the absorption maxima
are presented for samples G0489 and G0643, respectively.
Please recall that the former sample is basically the same
system as the fit sample but doped three times more strongly,

while the latter sample has significant structural differences
in terms of size, the maximal aluminium concentration used
and doping—both the mode and the amount—in respect to
G0490.

The corresponding results for the highly doped G0489 are
shown in Fig. 2(b). In this case the difference between the
predictions of both the parabolic and the hybrid models and
the experimental data is much larger, while the two models
yield similar frequency values and a similar positive average
slope: 0.28 GHz

K and 0.15 GHz
K , respectively. One can see that

also here the hybrid model is an improvement in respect to
the parabolic one, both in the terms of individual frequencies
as well as in case of the average slope, if just a slight one. The
predictions of the �k · �p model also do not fit the experimental
data as well as in the case of G0490, which is to be predicted
as that was the fit system. However, at each of the temperature
values considered, the error is significantly smaller that in
the case of the two other models. Additionally, it is the only
model yielding a negative average slope of −0.46 GHz

K , with
the experimental value of −0.32 GHz

K for comparison.
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The hardest test for our model is the 2 THz system G0643,
significantly more different from the G0490, for which the
results are shown in Fig. 2(c). Here, the errors in predictions
are visibly smaller in case of lower temperatures for both the
parabolic and the hybrid models in comparison to the �k · �p
model, while the situation reverses in case of higher temper-
atures. As no model is universally and obviously better, like
it was the case in Figs. 2(a) and 2(b), a numerical estimate of
total error needs to be used. After comparing the total absolute
difference between the experimental frequencies and the ones
predicted by each of the models, it turns out that the parabolic
model value is 1.92 times the one of the �k · �p model, while the
hybrid model value is 1.28 times the one of the �k · �p model.
In case of this sample, each of the models yields a negative
average slope, namely, −0.25 GHz

K , −0.38 GHz
K , and −0.51 GHz

K

for the parabolic, hybrid, and �k · �p models, respectively, as
compared to −0.65 GHz

K experimental average slope.

B. General conclusions about the models

We find that we can only achieve qualitative improvement
in the prediction by using the model which includes both
the dependence of the energy dispersion and of the wave
function on �k‖. We see this conclusion as the main result
of our work. To get the right slope and energies it turned
out to be necessary to deviate from one or zero in the S
renormalization method and to introduce a �k · �p-derived cur-
rent density operator. Unlike some simpler (e.g., few-band,
parabolic, or single-particle) systems, the off-� dynamic of
the wave functions, and specifically their transition current
elements, can in fact qualitatively change the behavior of our
multisubband collective system. In fact, we tried to include
only the off-� energy dispersions first and we have shown that
it is not enough.

We conclude that the �k · �p model describes both the val-
ues and the temperature change of the absorption maxima
frequency better than the other models in case of all three sam-
ples presented in Fig. 2. However, the relative performance of
this model, in relation to its competitors, decreases from the fit
system (G0490), to one structurally identical with a different
doping (G0489), to one structurally similar but with different
parameters (G0643). In the first case, Fig. 2(a), the difference
between predictions of the model and the experimental data
stay within or close to the experimental uncertainties. In the
second case, Fig. 2(b), the error is larger, but still the predic-
tions of the �k · �p model are consistently and visibly the best
for any T ∈ (75, 300) K. In the third case, Fig. 2(c), only the
overall error is the smallest for the �k · �p model. Similarly, the
average temperature slope of absorption maximum frequency
for that model is always closest to the one for the experimental
data, but while it is the only one in a qualitative agreement
with the latter for G0490 and G0489, in the case of G0643 we
can only say that its value is quantitatively the best one.

The partially qualitative character of the results is not un-
expected, as many parameters of the system are not precisely
known. For example, the proportion in which the difference
in the energy gap between gallium and aluminum divides
between the conduction and the valence bands was taken as
60 : 40 at zero temperature, resulting in a valence band offset

parameter which is assumed not to depend on temperature
or any other variable. This may not necessarily be the case.
For another instance, the Schrödinger-Poisson computation is
done with periodic boundary conditions in the growth direc-
tion which would strictly speaking correspond to an infinite
superlattice of quantum wells. In reality, we have a finite
number of wells, which can also differ between the sam-
ples. Different well positions within the superlattice are not
equivalent, due to band bending at the edges of the sample.
Furthermore, while the total amount of the donor centers can
be estimated from the MBE growth parameters up to about
10% uncertainty, it is not certain if all of the centers are
ionized or if all of the electrons are available for the plas-
mon formation. Additionally, the homogeneous broadening
parameter γIB was simplistically assumed to be an uniform
scalar. All the uncertainties above likely weaken our ability to
accurately estimate the A parameter, which is only supposed
to quantify the S ↔ P0 balance. Having pointed out all of
that, we still have found that an overall improvement can
be achieved by including the eight-band �k-dependent wave
functions and dispersion relations as well as replacing the cur-
rent density operator in the transition current density Eq. (3)
with the one corresponding to �k · �p Hamiltonian. We interpret
that as a success in capturing at least some of the targeted
�k‖-dynamics.

Apart from that, we also conclude that the hybrid model
provides a consistent improvement on the parabolic model,
with only a small additional computational cost. Furthermore,
we observe that the linear fit agrees with the experimen-
tal data within the uncertainty estimates and always gives a
negative slope of a fraction of GHz/K order of magnitude.
Consequently, we can say that our parabolic quantum well
systems experience a linear redshift in the energy with rising
temperature.

V. FUTURE OUTLOOK

As for the further developments of the model, the low-
temperature limitation of the model applicability (see the
discussion in Appendix G) could likely be improved with a
more sophisticated implementation. Reducing kmax

‖ for lower
T might be a way to decrease �k‖ without increasing the size
of the mesh. One could, for example, run the nextnano++
computation, then based on the dispersion obtained, automat-
ically or manually optimize the mesh size in each case, rerun
the nextnano++ simulation with the mesh thus obtained and
finally use the latter results in the ISB formation model.

More interesting, of course, would be the application of
our model to other structures. Extension to a wide set of
zincblende-based nanostructures should be readily achievable.
For example, while the �k · �p model model as it is now has
been simplified to wells with symmetric binding potential,
it could be readily extended to asymmetric structures too.
Furthermore, in GaAs/AlGaAs the primary use of this theory
is for quasi-Kohn regime systems, where the not so strong
�k‖-nonparabolicity can be visible. However, this model can
be extended to narrow band materials like InSb, where the in-
clusion of nonparabolicity due to conduction-valence mixing

115303-11



WOJCIECH J. PASEK et al. PHYSICAL REVIEW B 106, 115303 (2022)

would be important even for non parabolic-shaped quantum
wells.

While the effect of the nonparabolicity on the position of
the absorption maximum is interesting in itself, this result
could be also useful in further theoretical work e.g. on well-
in-cavity light source based on optical parametric oscillation
of ISB polaritons. Among further research goals that have yet
to be realized in this area are: (I) the theory of nonlinear pro-
cesses involving polaritons and (II) the microscopic model of
polariton-polariton interaction. Subject (I) has been studied in
the context of ISB transitions (as opposed to MSB plasmons)
in Ref. [47], where a generalized Gross-Pitaevskii model
was used to study intersubband polariton lasing. The work,
while preserving time locality, studied the importance of non-
Markovian character of the decay of cavity polariton modes
to the external radiation occurring due to Bragg scattering.
The nonlinear optical amplification of the pump-signal-idler
polaritonic scattering type was demonstrated. Subject (II)
has been addressed in Ref. [48], where the time-dependent
Schrödinger-Poisson equation was solved for a system with a
single-band scalar effective mass and a square well potential.
The transition frequency and the electric dipole were inferred
as two simple functions of the excitation level from the re-
sponse of the system to a given electric field pulse drive ε(t ).

Such works have thus far relied on the approximation that
the quantum oscillator can be interpreted as an individual
ISB transition, strictly connected to a single energy difference
between two given QW subbands. Some collective effects are
captured by assigning both a depolarization blueshift and a
nonlinear optical redshift. However, for cases where the more
complex behavior of MSP modes plays an important role, it
could be interesting to treat the formation of MSP modes first,
using a similar approach to the one described in the present
work. Afterwards, the coupling of the quantum oscillator to
the cavity modes could be applied. This could be of particular
interest in the the quasi-Kohn regime, where the blueshift and
the redshift strongly suppress each other. Further, using an
approach like that of the present work to incorporate effects
like nonparabolicity could help hone modeling for the future
development of nonlinear optical devices.

APPENDIX A: SINGLE PARTICLE LEVELS
AND OCCUPATION

The first step in the calculation process is to obtain the
dispersion of subband energy levels for a single electron in
the conduction band with a Schrodinger-Poisson solver. We
employed the nextnano++ software. While the dispersions
(and the wave functions) of a significant part of the Brillouin
zone are taken into account in the �k · �p model, only the ener-
gies at the � point are presented in the Fig. 3(a) as a function
of temperature to illustrate the general character of the system.
The dots show the values from nextnano++ calculation, while
the lines show the polynomial fit of the lowest possible degree
as the interpolation.

In the case of the G0490 (fit sample)—the red lines—the
Fermi level (green horizontal line, zero on the energy scale)
lies between the energies of the first and the second subbands
at low T . The former crosses the EF at ∼49 K, and the
levels lie increasingly further above the EF as temperature

FIG. 3. (a) The energy dispersion of the subband levels vs T . Red
color is for G0490, black for G0489 and blue for G0643. Symbols are
the nextnano++ results and the lines are a polynomial fit. The green
horizontal line is the EF for each of the samples, which are offset for
clarity. (b)-(d) The normalized occupation differences for individual
α resonators at the � point vs T . The (b) is for G0490, (c) for G0489,
and (d) for G0643.
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rises. In the case of G0489 (3 THz test sample)—the black
lines, offset by 125 meV for clarity—the Fermi level lies
between the second and the third subband energy level for
T →0. The second level crosses the Fermi level at ∼46 K,
then the first one for ∼90 K, and then the levels continue
to increase in energy as T grows. For the 2 THz system
(the G0643 sample)—the blue lines, offset by 250 meV—in
the temperature range considered, all the levels are already
significantly above the EF .

Figures 3(b)–3(d) show how these dispersions translate
into normalized occupation differences of the individual α

resonators at the � point: � fα (�)∑
α � fα (�) , for the three samples.

In the parabolic model, the shown occupation differences
are weights governing the impact of the resonator corre-
sponding to an individual transition between the neighboring
subbands, see Eq. (4). In the hybrid and �k · �p models, the
situation is more complex, as the differences are nontrivially
�k‖-dependent, but a detailed multiparameter analysis of this is
clearly beyond the scope of the simple explanation given in
this Appendix.

In Figs. 3(b) and 3(c), the occupation differences for low
T are dominated by one transition: the α = 1 in the case of
G0490 and α = 2 in the case of G0489. For T ∼ 300 K, how-
ever, the values become comparable, which enables multiple
α to participate in the MSP formation. In the case of the 2
THz system shown in Fig. 3(d), the values for different α

are relatively even more comparable in the whole temperature
range considered, with the relative differences diminishing as
the temperature rises. The results of Figs. 3(b) and 3(c) clearly
indicate a qualitative transition between an ISB plasmon and
a MSP as the temperature rises. The same effect could be
suspected in the Fig. 3(d) case, if the temperature range con-
sidered was broader.

There is some additional dynamics in the intermediate
range of temperature. For example, the crossing of the α = 1
and α = 2 values for G0489 in Fig. 3(c) at Tc ∼ 56 K or the
fact that the value that starts second largest for low T [i.e.,
α = 2 in Figs. 3(b) and 3(d) and α = 1 in Fig. 3(c)] has a
maximal value at some point [Tm ∼ 138 K in (b), Tm ∼ 67 K
in Fig. 3(c), Tm ∼ 75 K in Fig. 3(d)] and then they start to
diminish—which would probably also happen to next largest
ones at sufficiently large temperature. However, in general the
impact of the normalized occupation differences should not be
overestimated. While it is significant, in the end it turned out
that to explain the behavior of the system, not only including
the �k‖ nonparabolicity of the energy dispersion is needed but
also taking into account the change of the wave functions
beyond the � point.

APPENDIX B: ELECTROMAGNETIC DERIVATIONS
FOR THE SEMICLASSICAL MODEL

In this section the solutions to the electromagnetic field
equations for the semiclassical plasmon model will be de-
rived, filling in some gaps of the derivation in AA, and also
generalizing their results to QW that might not have inver-
sion symmetry. Finally, an expression for a local effective
permittivity tensor in the long-wavelength approximation is
obtained.

1. Electromagnetic fields in the quantum well region

The Maxwell’s equations, in the case of no sources and no
magnetic materials, have the form of

∇×E = −μ0∂tH, (B1)

∇×H = ∂t D, (B2)

∇·D = 0, (B3)

∇·B = 0. (B4)

E, D,H, and B are the electric field, electric displacement
field, magnetic field, and magnetic flux density, respectively.
In general, we would like to solve full structures such as the
MIM cavities [31–39], however we will focus here on the QW
region, which includes a nonlocal susceptibility tensor in the
growth direction (z). Once we have an effective permittivity
for this region, the other regions can be solved using a stan-
dard electromagnetic solver.

We assume that the QW region is time-invariant and spa-
tially invariant in the x − y plane. This will allow us to replace
∂t → iω, ∂x → iqx, ∂y → iqy in the following, where qx and
qy are the spatial wave numbers. (This is equivalent to taking
Fourier transforms of Maxwell’s equations.) For brevity of
notation, we will continue to use the same field symbols, but
we will assume from this point on that all fields have been
Fourier transformed along these coordinates and are func-
tions of ω, qx, qy. For example, Dz(z) ≡ Dz(ω, qx, qy, z) ≡
Fx,y,t {Dz(x, y, z, t )}.

Further, we can always split the field into two types of
modes [49]:

(1) TM modes where Hz = 0,
(2) TE modes where Ez = 0.
The TE modes are not of interest here, since they will not

couple to the quantum well and can be solved using standard
techniques. We will restrict ourselves to TM modes.

For a TM mode, since Hz = 0 by definition, we can write
the magnetic field as

H = Hy(z)ŷ. (B5)

In principle, the TM mode could have both x and y compo-
nents, but, since we have assumed invariance in the x-y plane,
we can always rotate our coordinate system so that Hx = 0.8

For a material with a constant magnetic permeability,
Eqs. (B4) and (B5) give

qyHy(z) = 0 �⇒ qy = 0, (B6)

showing that there is no spatial variation in the y direction. In
other words, rotating our coordinate system so that Hx = 0 is
equivalent to rotating our coordinate system so that the wave
is traveling in the x-z plane.

Using Eq. (B5) we can write Eq. (B1) as

iqxEy = 0, (B7)

−∂zEy = 0, (B8)

∂zEx − iqxEz = −iωμ0Hy (B9)

8Because of this, in the current section, qx plays the role of q‖ of
Sec. II C—see below.
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and Eq. (B2) as

iqxHy = iωDz, (B10)

−∂zHy = iωDx. (B11)

We are particularly interested in solving for the z compo-
nent of the electric field, which is what couples to the QW. We
can rearrange Eqs. (B9), (B10), and (B11) to obtain

qx∂zEx − iq2
xEz = −iω2μ0Dz, (B12)

qxDx = i∂zDz. (B13)

To solve these, we need a relationship between D and E .
We use a nonlocal, anisotropic susceptibility so that

Dx = ε0εxxEx, (B14)

Dz = ε0εsEz + ε0

∫
χzz(ω, q; z, z′)Ez(z′)dz′, (B15)

where εxx is the in-plane permittivity and εs is the background
permittivity of the undoped semiconductor. In the simplest
case, we would have εxx = εs = constant. However, in gen-
eral, they could be different from each other and dependent
on ω to account for in-plane plasma oscillations [50] and/or
the frequency-dependent permittivity of the background semi-
conductor (e.g., from optical phonons).

In the z direction, let us simplify the notation for the time
being by writing

Dz = ε0(εs + χzz )Ez, (B16)

with the understanding that χzz is acting as a linear operator.
Plugging these in to Eq. (B12) and simplifying (assuming
∂zεxx = 0), we get

qx(εs + χzz )∂zDx − iq2
xεxxDz = −iω2μ0ε0εxx(εs + χzz )Dz.

(B17)

Then, using Eq. (B13), we get

(εs + χzz )∂2
z Dz − q2

xεxxDz = −k2
0εxx(εs + χzz )Dz, (B18)

where k2
0 = ω2μ0ε0 = ω2

c2 . Rearranging, we get(
εs∂

2
z + εxxεsk

2
0 − εxxq2

x

)
Dz = −χzz

(
∂2

z + εxxk2
0

)
Dz. (B19)

Defining

k2
z = εxxk2

0 − (εxx/εs)q2
x (B20)

and writing out the χzz operator explicitly, we get the final
result9(

∂2
z + k2

z

)
Dz = −

∫
χzz(ω, q; z, z′)

εs

(
∂2

z′ + εxxk2
0

)
Dz(z′)dz′.

(B21)

9Note: our definition of kz reduces to that of AA when εxx = εs.
Care must be taken when applying boundary conditions in the case
εxx �= εs, because in that case this kz in the QW region will not be
equal to kz in the regions outside the well.

Finally, using Eq. (2), we obtain the result of Eq. (6) of AA:(
∂2

z + k2
z

)
Dz = −

∑
α

χα (ω, qx )

εs
ξα (z)

×
∫

ξα (z′)
(
∂2

z′ + εxxk2
0

)
Dz(z′)dz′. (B22)

2. A general solution

We can “guess” a solution to Eq. (B22) of the following
form:

Dz(z) = A cos(kzz) + B sin(kzz) + q2
x

∑
α

χα

εs

× (
AF A

α + BF B
α

) ∫
ξα (z′)g(z, z′)dz′, (B23)

with the Green’s function

g(z, z′) = − sin(kz|z − z′|)/2kz. (B24)

This is quite similar to Eq. (8) in AA, however, their solution
only works for adjacent transitions in symmetric quantum
wells, where it can be assumed that ξα (z) is even with respect
to z. What follows allows us to solve the equation without
making such an assumption.

Please note that(
∂2

z + k2
z

)
cos(kzz) = 0, (B25)(

∂2
z + k2

z

)
sin(kzz) = 0, (B26)

and
(
∂2

z + k2
z

)
g(z, z′) = −δ(z − z′). (B27)

Applying (∂2
z + k2

z ) to both sides of Eq. (B23) gives us(
∂2

z + k2
z

)
Dz(z) = −q2

x

∑
α

χα

εs

(
AF A

α + BF B
α

)
ξα (z). (B28)

Comparing to Eq. (B22), we see that our guess for Dz(z) will
be a solution if

AF A
α + BF B

α = 1

q2
x

∫
ξα (z′)

(
∂2

z′ + εxxk2
0

)
Dz(z′)dz′. (B29)

At this point, our solution is self-referential, but it turns out
that it is possible to solve for the F A

α and F B
α coefficients

without knowing Dz first.10

3. Solving for the F coefficients

From Eq. (B20) we have(
∂2

z + εxxk2
0

)
Dz = εxx

εs
q2

x Dz + (
∂2

z + k2
z

)
Dz, (B30)

which, after using Eq. (B28), becomes(
∂2

z + εxxk2
0

)
Dz = εxx

εs
q2

x Dz − q2
x

∑
α

χα

εs

(
AF A

α + BF B
α

)
ξα (z).

(B31)

10We will still be left with two unknowns A and B in the solution,
but this is not surprising because we are searching for a general
solution in the QW region, with unspecified boundary conditions. A
and B will eventually be determined by the boundary conditions for
a particular problem.
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Plugging this into Eq. (B29) gives

AF A
α + BF B

α = εxx

εs

∫
ξα (z′)Dz(z′)dz′

−
∑
α′

χα′

εs

(
AF A

α′ + BF B
α′

)
Iα,α′dz, (B32)

where

Iα,α′ =
∫

ξα (z)ξα′ (z)dz. (B33)

Furthermore, by applying (εxx/εs)
∫

dz′ξα (z′) to Eq. (B23),
we see that

εxx

εs

∫
ξα (z′)Dz(z′)dz′

= ACA
α + BCB

α − q2
x

∑
α′

χα′

εs

(
AF A

α′ + BF B
α′

)
Dα,α′ , (B34)

where we have defined for convenience

CA
α = εxx

εs

∫
cos(kzz)ξα (z)dz, (B35)

CB
α = εxx

εs

∫
sin(kzz)ξα (z)dz, (B36)

and Dα,α′ = −εxx

εs

∫
ξα (z)g(z, z′)ξα′ (z′)dzdz′. (B37)

Plugging Eq. (B34) into Eq. (B32), we obtain

AF A
α + BF B

α = ACA
α + BCB

α − q2
x

∑
α′

χα′

εs

(
AF A

α′ + BF B
α′

)
Dα,α′

−
∑
α′

χα′

εs

(
AF A

α′ + BF B
α′

)
Iα,α′ . (B38)

Finally, we have an equation for the Fα’s which does not
depend self-referentially on the field Dz(z). Our intention is
that the A and B coefficients will depend on the boundary
conditions, so we would like a solution for the Fα’s that works
for any and all values of A and B. As such, the A and B parts
of the equation must be satisfied independently of each other,
and we obtain the following two conditions:

F A
α = CA

α −
∑
α′

χα′

εs
F A

α′
[
Iα,α′ + q2

x Dα,α′
]
, (B39)

F B
α = CB

α −
∑
α′

χα′

εs
F B

α′
[
Iα,α′ + q2

x Dα,α′
]
. (B40)

Note that these can be written concisely as matrix equations:

MFA = CA, (B41)

MFB = CB, (B42)

with both equations using the same M matrix:

Mα,α′ = δα,α′ + χα

εs

[
Iα,α′ + q2

x Dα,α′
]
. (B43)

In summary, we have derived matrix equations for F A
α , F B

α

which do not depend on Dz(z). We can calculate M, CA,
and CB, only requiring knowledge of χα and ξα (z), which
can be calculated from the Schrödinger-Poisson solution for
the quantum well. Then, by solving the matrix equations, we

obtain the F A
α , F B

α coefficients, which can be used to construct
the Dz(z) field solution Eq. (B23). The two remaining un-
knowns A, B will be determined by the boundary conditions.
We could, for example, construct a transfer matrix similar
to AA.

Finally, note that if ξα (z) is even (as would be the case for
adjacent n → n + 1 transitions in a symmetric QW), then we
will have CB = 0. In that case, we will always have FB = 0 as
a valid solution. Then, if we also assume εxx = εs, we see that
we recover the same solution as AA in the case of inversion-
symmetric quantum wells.

4. Effective permittivity

Now that we have a solution for Dz, we can try to construct
an effective local permittivity tensor. We will do this by cal-
culating the Ez field from Dz using Maxwell’s equations, and
then compare the two. As we will see, a local permittivity is
only possible in the long-wavelength limit.

To find the Ez field from the Dz field, we can use Eqs. (B12)
and (B13), along with Dx = ε0εxxEx. After simplifying, we get

Ez(z) = 1

q2
xε0εxx

(
∂2

z + εxxk2
0

)
Dz(z), (B44)

which, using Eq. (B20), can also be written as

Ez(z) = Dz(z)

ε0εs
+ 1

q2
xε0εxx

(
∂2

z + k2
z

)
Dz(z). (B45)

Taking into account Eq. (B28), we obtain an expression for
the Ez field:

Ez(z) = Dz(z)

ε0εs
− 1

ε0εxx

∑
α

χα

εs

(
AF A

α + BF B
α

)
ξα (z). (B46)

Comparing this to our Dz field expression Eq. (B23), it is
clear (unsurprisingly) that we do not have a simple propor-
tional relationship between the Dz and Ez fields with which
to define a permittivity. However, we can define an effective
permittivity in the long-wavelength limit by averaging the
fields over z and taking a ratio 〈Dz(z)〉/〈Ez(z)〉 (a similar
approach to Ref. [3]). For THz QW, the long-wavelength limit
is quite reasonable, since we have well widths �100 nm and
electromagnetic wavelengths �10 µm, even after accounting
for the refractive index of the semiconductor.

In the long-wavelength limit, we take qx, k0 → 0 (which
also implies kz → 0). Then our expression Eq. (B23) for the
Dz field becomes simply

Dz(z) ≈ A. (B47)

We also have CB
α ≈ 0 for all α, which means that F B

α ≈ 0 as
well. Our expression (B46) for the Ez field becomes

Ez(z) ≈ A

ε0εs
− A

ε0εxx

∑
α

χα

εs
F A

α ξα (z). (B48)

We can define our effective permittivity (in the z direction) as

εzz,eff = 〈Dz〉
ε0〈Ez〉 ≈ εs

[
1 −

∑
α

χα

εxx
F A

α 〈ξα〉
]−1

, (B49)
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where 〈·〉 denotes an average over the entire QW region in
the z direction. Furthermore, since we are using the long-
wavelength limit anyway, we can also use it to simplify our
equation for the F A

α ’s:

F A
α ≈

∫
ξα (z)dz −

∑
α′

χα′

εs
F A

α′ Iα,α′ , (B50)

finally reaching the Eq. (14).
It turns out that in the long wavelength limit, the problem is

greatly simplified. Once we solve the matrix equation to find
the F A

α ’s, we can directly calculate an effective permittivity
tensor which can be used in a standard electromagnetic solver.

As a final note, one must be slightly careful with the def-
inition of L. Typically, L should be the width of the region
simulated by Schrödinger-Poisson. For example, a common
case might be a periodic stack of QW separated by barriers. If
one performs a Schrödinger-Poisson simulation of the entire
stack, then L should be the length of the entire stack. If one
performs a simulation of a single well with periodic boundary
conditions, then L should be the length of the period. There is
some arbitrariness here, but it is important to have consistency
between the Schrödinger-Poisson equations, the calculation of
the effective permittivity, and in the length of material which
is assigned this effective permittivity in the final electromag-
netic simulation.

APPENDIX C: MATHEMATICAL MODEL
OF MULTIPASS ABSORPTION

In this section an expression for multipass absorption
through a quantum well is derived. This approach was used
to fit the experimental data in Sec. IV. We consider a sample
with three key regions: a substrate, an active region, and a
metallic coating. For this model, we treat the metal as a perfect
electric conductor, and the substrate as having a constant, real
permittivity εsub. We model the active region with an effective
complex permittivity tensor. For this work, where the active
region comprises a stack of quantum wells, we assume that
the growth-direction component εzz takes the form of

1

εzz(ω)
= 1

εs

(
1 + ω2

P

ω2 − ω2
0 + iγω

)
(C1)

and that εxx = εyy = εs. However, the electromagnetic deriva-
tion that follows is general and does not depend on the
particular form of the permittivity tensor, so more sophisti-
cated models could be used.

The main restriction here is that each individual quantum
well must be small compared to the wavelength of light, so
that the stack can be treated as an effective medium from the
perspective of the electromagnetic field. In the case of Sec. IV,
we are working with free-space wavelengths on the order of
100 µm, which will give a growth-direction wavelength of
around λ ≈ 40 µm in GaAs at 45◦ incidence. The individual
quantum wells, which have a width on the order of 0.1 µm,
are quite small compared to the wavelength.

It should be emphasized, though, that this does not mean
the stack as a whole is negligibly thin. In the case of the
54-well stack, the total thickness of the active region is around
6 µm, which is an appreciable fraction of the wavelength. On

the other extreme, the substrate thickness (∼500 μm) is quite
large compared to the wavelength, and we will neglect it:
effectively treating it as an incoherent reflector. As such, we
assume that each reflection off the active region side of the
substrate can be treated independently. Then, if we can find
the power absorption spectrum for a single bounce, we can
multiply to find the total absorption through the structure.

1. The single-pass reflection coefficient

Let z be the growth direction, and let the active region lie
in 0 < z < La with a perfect conductor for z < 0. At z > La

there is substrate with permittivity εsub. We assume that the
light arrives at the active region from far away in the substrate,
so we can treat the substrate as a semi-infinite slab.

For TM light, let us assume the magnetic field, H, is point-
ing in the y direction. Then H can be written in the active
region 0 < z < La and substrate z > La, respectively, as

Hy,a = (H−
a e−ikz,az + H+

a e+ikz,az )eiqx,ax, (C2)

and Hy,s = (H−
s e−ikz,s (z−La ) + H+

s e+ikz,s (z−La ) )eiqx,sx. (C3)

Using Maxwell’s equations, we obtain

iωε0(ε · E ) = ∇ × H = (∂xHyẑ − ∂zHyx̂), (C4)

which leads, in the active region, to

Ez,a = qx,a

ωεzzε0
(H−

a e−ikz,az + H+
a e+ikz,az )eiqx,ax, (C5)

Ex,a = kz,a

ωεxxε0
(H−

a e−ikz,az − H+
a e+ikz,az )eiqx,ax (C6)

and in the substrate region to

Ez,s = qx,s

ωεsubε0
(H−

s e−ikz,s (z−La ) + H+
s e+ikz,s (z−La ) )eiqx,sx, (C7)

Ex,s = kz,s

ωεsubε0
(H−

s e−ikz,s (z−La ) − H+
s e+ikz,s (z−La ) )eiqx,sx. (C8)

Because of the conductor boundary condition, we must
have Ex,a = 0 at z = 0, which gives

kz,a

ωεxxε0
(H−

a − H+
a )eiqx,ax = 0 (C9)

or H−
a = H+

a := Ha. The fields in the active region are given
by

Hy,a = 2Ha cos(kz,az)eiqx,ax, (C10)

Ez,a = 2Ha
qx,a

ωεzzε0
cos(kz,az)eiqx,ax, (C11)

and Ex,a = −2iHa
kz,a

ωεxxε0
sin(kz,az)eiqx,ax. (C12)

The second boundary condition is that the tangential E and H
fields must be continuous across the boundary at z = La. First,
this enforces that qx,s = qx,a. Second, it gives

2Ha cos(kz,aLa) = (H−
s + H+

s ), (C13)

−2iHa
kz,a

ωεxxε0
sin(kz,aLa) = kz,s

ωεsubε0
(H−

s − H+
s ). (C14)
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Eliminating Ha, we get

ωεxxε0

−ikz,a
cot(kz,aLa) = ωεsubε0

kz,s

H−
s + H+

s

H−
s − H+

s

, (C15)

which becomes

i
εxxkz,s

kz,aεsub
cot(kz,aLa) = 1 + r

1 − r
, (C16)

where r = H+
s /H−

s is the complex reflection coefficient.
Solving for r in the above, we find

r = −kz,aεsub + ikz,sεxx cot(kz,aLa)

kz,aεsub + ikz,sεxx cot(kz,aLa)
. (C17)

To actually calculate r, we still need to know the wavenum-
bers in the substrate and active region. The wavenumbers in
the substrate region must obey

q2
x,s + k2

z,s = εsub
ω2

c2
= εsubk2

0 , (C18)

so we can write11

qx,s = √
εsubk0 sin φ; kz,s = √

εsubk0 cos φ, (C19)

where φ is the incidence angle, measured relative to the
growth axis.

The wavenumbers in the active region are a bit trickier
because of the anisotropy, but it can be shown (using ∇ × E =
−iωμ0H) that

q2
x,a

εzz
+ k2

z,a

εxx
= ω2

c2
= k2

0 . (C20)

Recall from before that we have qx,a = qx,s. Solving for kz,a

in terms of k0, we get

k2
z,a = εxx

[
1 − εsub

εzz
sin2 φ

]
k2

0 . (C21)

These expressions for kz,s and kz,a can be used in Eq. (C17)
to calculate the complex reflection coefficient for the active
region against a gold coating.

2. Multipass absorption

In a multipass configuration (again, where we are assuming
incoherent reflections off the bottom of the substrate so that
each reflection is independent), the total transmission through
the structure can be calculated as

T (ω) = |r(ω)|2Npass, (C22)

where Npass is the number of passes through the active region
(i.e., the number of reflections). This can be approximately
calculated [51] using

Npass = Lsub

Dsub
cot φ, (C23)

11Note we have implicitly assumed qx,s and kz,s to be real here, since
we are assuming that the other substrate boundary is far off and thus
the incoming light can be treated as a plane wave. If the substrate
thickness were not very large compared to the wavelength, then we
could not necessarily assume that qx,s and kz,s are real, and we would
need to consider waveguide modes.

where Lsub and Dsub are the length and thickness of the sample,
respectively, and φ is the incidence angle. However, this is
only an approximation. In reality, the number of passes may
depend on where the light hits the facet. In general, one would
need to know the distribution of light across the facet to
calculate the total transmission. In practice, it is quite difficult
to know this value exactly, which translates to an uncertainty
in the total magnitude of the absorption.

Further, note that we have neglected the reflection off
the entry and exit facets: i.e., only a certain fraction of the
incoming light will actually enter the sample in the first
place. In practice, however such complications are mitigated
by dividing the TM absorption measurement by an identi-
cal TE measurement. This cancels out any losses which are
common to both TM and TE light, isolating the effect of
the active region, which is anisotropic and only absorbs TM
light.

APPENDIX D: DERIVATION OF THE EQ. (27) MATRIX

In this section the connection between AA and our model
using the �k · �p-compatible definition of current operator will
be discussed. The notation of the mentioned work is adopted
for this derivation, with the exception of α ≡ n → m, and
additionally defining Jα = ∫

ξα (z)dz = L〈ξα〉.
First, one should note that the following simplification is

used in AA:[
1

2

fn,�k − fm,�k+�q
(ω + iδ) − ωα (�k, �q)

−
fm,�k+�q
ω0

α

]

+
[

1

2

fn,�k − fm,�k+�q
−(ω + iδ) − ωα (�k, �q)

+ fn,�k
ω0

α

]

→
fn,�k − fm,�k+�q

ω0
α

[
1 + ωα (�k, �q)ω0

α

ω2 − ω2
α (�k, �q)

]
. (D1)

However, from the linear response theory, one in fact gets
the following expression (see Appendix F and also Sec. 4.3
Current-response of a Q2DEG of Ref. [15] plus Sec. 3. The
(001) Surface of InSb of Ref. [13] for reference):

[
1

2

fn,�k − fm,�k+�q
(ω + iδ) − ωα (�k, �q)

−
fm,�k+�q
ω0

α

]
ξ
α,�k (z)ξ ∗

α,�k (z′)

+
[

1

2

fn,�k − fm,�k+�q
−(ω + iδ) − ωα (�k, �q)

+ fn,�k
ω0

α

]
ξ ∗
α,�k (z)ξ

α,�k (z′),

(D2)

which only in the case of real ξ
α,�k (z) can be simplified to the

right-hand side (RHS) of Eq. (D1) times ξ
α,�k (z)ξ

α,�k (z′). In our
case, we have retained the expression Eq. (D2), which is the
origin of the σ index in Eqs. (21), (22), and (23)—and further
as as part of the β index—and also the origin of the p(β ) ≡
p(σ ), ν(β ) ≡ ν(σ ) symbols in Eqs. (26) and (28).

Second, using the following set of substitutions:

Fα → F̃αJα, Iα,α′ → Ĩα,α′JαJ∗
α′ , χα → χ̃α

JαJ∗
α

, (D3)
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on the set of linear equations for Fα:

Fα = Jα −
∑
α′

χ ′
α

εs
Iα,α′Fα′ , (D4)

which is equivalent to Eq. (14), one obtains dimensionless
equation

F̃α = 1 −
∑
α′

χ̃α′

εs
Ĩα,α′ F̃α′ . (D5)

Third, one should note that as the Ĩα,α′ in our case de-
pend on �k′, the corresponding summation in ξα′ in Eq. (3) in
Ref. [12] should be taken outside. This leads to expressions of
Eqs. (22) and (26).

Finally, as the Ĩα,α′ will also depend on �k in our model, we
introduced the averaging over this index, as in Eq. (25). As the
contribution in sum over �k′ in Eq. (26) is approximately pro-
portional to the occupation difference between the subbands
of α′ transition [see, e.g., RHS of Eq. (D1)], we adopted cor-
respondingly the occupation difference between the subbands
of α transition as weight for the average. The objection can be
made that the averaging the transition current density over �k,
while keeping the �k′ free for the sum in the Eq. (26) introduces
an arbitrary unequivalence between the two dimensions. To
control for this effect, we also used the two-dimensional av-
eraging, see the second line in Eq. (25). Fortunately, it turned
out that the difference between the two approaches is minimal,
not visible in the scale of the figures presented in the Sec. IV.

APPENDIX E: INTRODUCTION OF THE JZ

INTO THE MODEL

The workhorse of the ISB formation model of Ref. [12] are
the transition current densities ξα , see Eq. (3). Please note that
the ∂

∂z operator in the latter can be interpreted as a part of the
one-band common probability current definition:

jz = h̄ei

2m∗

(
ψ

∂ψ∗

∂z
− ψ∗ ∂ψ

∂z

)
, (E1)

so that

ξα = i[ jz]α, (E2)

where ξα in contrast to Eq. (3) does not assume that the wave
functions are real:

ξα (z) = h̄e

2m∗

[
ψ∗

m(z)
∂ψn(z)

∂z
− ψn(z)

∂ψ∗
m(z)

∂z

]
, (E3)

see Eq. (2.32) in Ref. [13] and Eq. (76) in Ref. [15]. It
is important to note that the latter expression is derived in
the cited sources with the help of the Kubo formula and
the Matsubara method (for the detailed implementation of the
latter in a similar context, see, e.g., Ref. [14]). This procedure
was applied to a parabolic system with a isotropic effective
mass, as demonstrated, e.g., by Eqs. (2.1)– (2.5) and (3.1)–
(3.3) in Ref. [13], by Eqs. (37)– (42) in Ref. [15] and by
Eqs. (1)–(8) in Ref. [14].l2 There is, in general, no easy way of

l2Strictly speaking, a kind of nonparabolicity is present in the initial
considerations of Sec. 2 of Ref. [13], however: (I) it is still a one-band

including the k‖-dependent, nonparabolic subbands spanned
onto the Bloch basis of Eq. (19) into the procedure. Instead,
we postulate to replace the [ jz]α as per one-band definition
with Jn̂

α,σ,k‖ (z) of Eq. (21)—i.e., the current density using

the operator Ĵz proper for the eight-band �k · �p, as defined in
Sec. II F, following the work of Chao and Chuang [40].

Our approach has a couple of advantages. First, the concept
of a scalar effective mass m∗ as present in Eq. (3), ill-fitting to
a nonparabolic multiband system with the S/γ1/γ2/γ3 set of
parameters depending on the position via composition profile
(see Table II), is automatically incorporated into the definition
of Ĵz. Second, there is a dependence on �k‖—both magnitude
and orientation—present in the model, both on the level of the
individual wave functions ψ n̂

n,k‖ (z) and the Ĵz operator (which

explicitly depends on �k‖).

APPENDIX F: DERIVATION OF THE PZZ(�Q, Z, Z′, ω)
IN REF. [15]

This section follows the derivation of the zz element of the
polarization function P as presented in work of Wendler and
Kändler, Ref. [15]—referenced with WK in the text and the
equations of this section, using their notation. Here: α, β ∈
{x, y, z}, K and K ′ are subband indices, ϕK (z) is the corre-
sponding K-subband wave function, nF is the Fermi-Dirac
distribution, and �KK ′ is the ω0

α of AA. PKK ′ ( �q‖, ω) roughly
corresponds to χα while gKK ′ (z) to ξα (z). The goal of this
derivation is to explain the origin of the Eq. (26) and to present
the problems arising when the eigenfunctions are not real
and when the simple relation between the eigenfunction and
eigenenergy cannot be used.

1. Introductory steps

Let us start with Eq. (WK81),

PKK ′
zz ( �q‖, ω) = −

∑
�k‖

(
h̄2PKK ′ ( �q‖, �k‖, ω)

4m2
e

+ h̄e2nF (K, �k‖)

Am2
e�KK ′

)
,

(F1)
and Eq. (77) in the same work, in the case of α = β = z:

Pzz( �q‖, z, z′, ω)

=
∑
KK ′

PKK ′
zz ( �q‖, ω)gKK ′ (z)g∗

KK ′ (z′)

=
∑
KK ′

⎡
⎣−

∑
�k‖

(
h̄2PKK ′ ( �q‖, �k‖, ω)

4m2
e

+ h̄e2nF (K, �k‖)

Am2
e�KK ′

)⎤
⎦

× gKK ′ (z)g∗
KK ′ (z′) = T1 + T2, (F2)

model and (II) when the authors discuss an example of application of
the model in Sec. 3 of Ref. [13], they immediately assume a parabolic
system and real eigenfunctions.
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where

T1 = − h̄2

4m2
e

∑
KK ′

∑
�k‖

PKK ′ ( �q‖, �k‖, ω)gKK ′ (z)g∗
KK ′ (z′)

T2 = − h̄e2

Am2
e

∑
KK ′

∑
�k‖

nF (K, �k‖)

�KK ′
gKK ′ (z)g∗

KK ′ (z′). (F3)

At this point, one can see that the first term is already
equivalent to the first term in Eq. (WK74) if one keeps in mind
that

F KK ′
z ( �q‖, �k‖, z)F KK ′

z ( �q‖, �k‖, z′)∗ = gKK ′ (z)g∗
KK ′ (z′), (F4)

see Eq. (75) in the same work. Thus, the following will be an
investigation on how the second term T2 of Eq. (F2) compares
to the second term of Eq. (WK74). Mirroring the derivation in
Section 3. The (001) surface of InSb in work of Eguiluz and
Maradudin Ref. [13], the derivative of the term is taken:

d

dz
T2 = d

dz

⎡
⎣− h̄e2

Am2
e

∑
KK ′

∑
�k‖

nF (K, �k‖)

�KK ′
gKK ′ (z)g∗

KK ′ (z′)

⎤
⎦

= − h̄e2

Am2
e

∑
KK ′

∑
�k‖

nF (K, �k‖)

�KK ′

[
d

dz
gKK ′ (z)

]
g∗

KK ′ (z′).

(F5)

Using Eq. (WK84), one gets

d

dz
T2 = − 2e2

Ame

∑
KK ′

∑
�k‖

nF (K, �k‖)ηKK ′ (z)g∗
KK ′ (z′). (F6)

One can easily see that Eqs. (WK83) and (WK85) should
now be used to move toward the form that the second term
takes in Eq. (74) of that work. However, the equations are
investigated here in detail.

2. The case of real eigenfunctions

It is clear that, due to the completeness of ϕK basis, the
Eq. (WK83) should, in fact be as follows:

∑
K

ϕK (z)ϕ∗
K (z′) =

∑
K

ϕ∗
K (z)ϕK (z′) = δ(z − z′), (F7)

and only for the real eigenfunctions, the original formulation

∑
K

ϕK (z)ϕK (z′) = δ(z − z′) (F8)

can be retrieved. Moreover, the Eq. (WK85) contains the
ηKK ′ (z)gKK ′ (z′) term instead of ηKK ′ (z)g∗

KK ′ (z′) that is present
in our Eq. (F6). This suggest that, contrary to what they say in
their work, authors assumed ϕK ’s to be real when they went
from Eq. (WK74) to Eqs. (WK77)– (WK81). Furthermore,
as the nF (K, �k‖) term is indexed by K and not K ′ in both
Eq. (WK74) and Eq. (F6), then the sum should be over K ′

instead. We will start with∑
K ′

ηKK ′ (z)gKK ′ (z′)

=
∑

K ′
[ϕK (z)ϕK ′ (z)]

[
ϕK (z′)

dϕK ′ (z′)
dz′ − ϕK ′ (z′)

dϕK (z′)
dz′

]

= ϕK (z)ϕK (z′)
∑

K ′
ϕK ′ (z)

dϕK ′ (z′)
dz′

− ϕK (z)
dϕK (z′)

dz′
∑

K ′
ϕK ′ (z)ϕK ′ (z′). (F9)

In the case of the first term, the derivative works only on
the z′-dependent part of what is under the sum over K ′:∑

K ′
ϕK ′ (z)

dϕK ′ (z′)
dz′ = d

dz′
∑

K ′
ϕK ′ (z)ϕK ′ (z′) = d

dz′ δ(z − z′)

(F10)
and∑

K ′
ηKK ′ (z)gKK ′ (z′) = ϕK (z)ϕK (z′)

d

dz′ δ(z − z′)

− ϕK (z)
dϕK (z′)

dz′ δ(z − z′). (F11)

Using the distributional derivative property of Dirac delta
that d

dz′ δ(z − z′) = − d
dz δ(z − z′) one can further write

∑
K ′

ηKK ′ (z)gKK ′ (z′) = −ϕK (z)ϕK (z′)
d

dz
δ(z − z′)

− ϕK (z)
dϕK (z′)

dz′ δ(z − z′). (F12)

Now, using the projective ability of the delta function
f (x)δ(x − y) = f (y)δ(x − y) twice on the second term and
finally obtain∑

K ′
ηKK ′ (z)gKK ′ (z′)

= −ϕK (z)ϕK (z′)
d

dz
δ(z − z′) − ϕK (z′)

dϕK (z)

dz
δ(z − z′)

= −ϕK (z′)
[
ϕK (z)

d

dz
δ(z − z′) + dϕK (z)

dz
δ(z − z′)

]

= −ϕK (z′)
d

dz
[ϕK (z)δ(z − z′)]. (F13)

It can be easily shown that the minus sign difference between
this result with respect to Eq. (WK85) is due to summation
over K ′ instead of K .

Combining Eq. (F6) with Eq. (F13) yields

d

dz
T2 = − 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)

[∑
K ′

ηKK ′ (z)gKK ′ (z′)

]

= − 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)

×
{
−ϕK (z′)

d

dz
[ϕK (z)δ(z − z′)]

}
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= 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)

{
ϕK (z′)

d

dz
[ϕK (z)δ(z − z′)]

}

= d

dz

⎡
⎣ 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)ϕK (z′)ϕK (z)δ(z − z′)

⎤
⎦

(F14)

and, after using the projective property again, one arrives at

d

dz
T2 = − 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)

[∑
K ′

ηKK ′ (z)gKK ′ (z′)

]

= − 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)

×
{
−ϕK (z′)

d

dz
[ϕK (z)δ(z − z′)]

}

= 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)

{
ϕK (z′)

d

dz
[ϕK (z)δ(z − z′)]

}

= d

dz

⎡
⎣ 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)|ϕK (z)|2δ(z − z′)

⎤
⎦.

(F15)

Having omitted the integration constant, which could be
argued to be zero (see the corresponding discussion in Sec. 3
of Ref. [13]), one obtains

T2 = δ(z − z′)
2e2

Ame

∑
K

⎛
⎝|ϕK (z)|2

∑
�k‖

nF (K, �k‖)

⎞
⎠, (F16)

which is equal to minus the corresponding term in Eq. (WK74)
for α = β = z.

In fact, the derivation is done the other way in WK, so the
correct version of Eq. (F2) should be

Pzz( �q‖, z, z′, ω) = T1 − T2, (F17)

and Eq. (F1) should take the form of

PKK ′
zz ( �q‖, ω) = −

∑
�k‖

(
h̄2PKK ′ ( �q‖, �k‖, ω)

4m2
e

− h̄e2nF (K, �k‖)

Am2
e�KK ′

)
.

(F18)
This is the minus sign of the “omega terms” in the parabolic
model of Eqs. (3) and (15) in Ref. [12] of the �q‖ → 0 limit of
the χ (�q‖, ω).

3. The case of complex eigenfunctions

If the ϕ functions are not real, then the relations of
Eq. (F7) can only be used, not of Eq. (F8). In addi-
tion, the ηKK ′ (z)gKK ′ (z′) term will be replaced with the
ηKK ′ (z)g∗

KK ′ (z′) one, see Eq. (F6). With this in mind, starting

with∑
K ′

ηKK ′ (z)g∗
KK ′ (z′)

=
∑

K ′
[ϕK (z)ϕ∗

K ′ (z)]

[
ϕ∗

K (z′)
dϕK ′ (z′)

dz′ − ϕK ′ (z′)
dϕ∗

K (z′)
dz′

]

= ϕK (z)ϕ∗
K (z′)

∑
K ′

ϕ∗
K ′ (z)

dϕK ′ (z′)
dz′

− ϕK (z)
dϕ∗

K (z′)
dz′

∑
K ′

ϕ∗
K ′ (z)ϕK ′ (z′), (F19)

and similarly to the case of real wave functions, one gets∑
K ′

ϕ∗
K ′ (z)

dϕK ′ (z′)
dz′ = d

dz′
∑

K ′
ϕ∗

K ′ (z)ϕK ′ (z′) = d

dz′ δ(z − z′)

(F20)
and ∑

K ′
ηKK ′ (z)g∗

KK ′ (z′) = ϕK (z)ϕ∗
K (z′)

d

dz′ δ(z − z′)

−ϕK (z)
dϕ∗

K (z′)
dz′ δ(z − z′). (F21)

With d
dz′ δ(z − z′) = − d

dz δ(z − z′), one obtains

∑
K ′

ηKK ′ (z)g∗
KK ′ (z′) = −ϕK (z)ϕ∗

K (z′)
d

dz
δ(z − z′)

− ϕK (z)
dϕ∗

K (z′)
dz′ δ(z − z′). (F22)

Until this moment the derivation was paralleling the previous
(real) case. However, using the projective ability correspond-
ingly, yields∑

K ′
ηKK ′ (z)g∗

KK ′ (z′) = −ϕK (z)ϕ∗
K (z′)

d

dz
δ(z − z′)

− ϕK (z′)
dϕ∗

K (z)

dz
δ(z − z′), (F23)

and the conjugations of the first and the second term on RHS
do not match. It is easy to notice, that the root of the problem
is that the projective ability does not swap the conjugation of
the accompanying function, which renders the next would-be
step “illegal.” It needs to be underlined that this means there
is no possibility of writing the Eq. (WK74) in a form of
Eq. (WK77), on which hinges the whole crucial idea of sepa-
ration of χ (ω) from ξ (z/z′) in nonlocal susceptibility of AA.

To proceed further somehow, we will for now pretend that
the conjugations in the first and the second term agree. One
could propose two versions, going with either conjugation or-
dering of the first or of the second term. They are, respectively,

(I )
∑

K ′
ηKK ′ (z)g∗

KK ′ (z′) = −ϕ∗
K (z′)

d

dz
[ϕK (z)δ(z − z′)],

(II )
∑

K ′
ηKK ′ (z)g∗

KK ′ (z′) = −ϕK (z′)
d

dz
[ϕ∗

K (z)δ(z − z′)].

(F24)
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Going with (I) yields

d

dz
T2 = − 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)

[∑
K ′

ηKK ′ (z)g∗
KK ′ (z′)

]

= − 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)

×
{
−ϕ∗

K (z′)
d

dz
[ϕK (z)δ(z − z′)]

}

= 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)

×
{
ϕ∗

K (z′)
d

dz
[ϕK (z)δ(z − z′)]

}

= d

dz

⎡
⎣2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)ϕ∗
K (z′)ϕK (z)δ(z − z′)

⎤
⎦

(F25)

and, after using the projective property again, one arrives at

d

dz
T2 = d

dz

⎡
⎣ 2e2

Ame

∑
K

∑
�k‖

nF (K, �k‖)|ϕK (z)|2δ(z − z′)

⎤
⎦,

(F26)
so

T2 = δ(z − z′)
2e2

Ame

∑
K

⎛
⎝|ϕK (z)|2

∑
�k‖

nF
(
K, �k‖

)⎞⎠, (F27)

which is the same result, as the one for real wave functions. It
can be easily shown that going with the second version of the
approximation also leads to the same result.

4. The relation between the energy, mass, and current elements

The relation Eq. (WK84),

d

dz
gKK ′ (z) = 2me�KK ′

h̄
ηKK ′ (z), (F28)

can be easily shown to follow from the explicit form of the
Schrödinger equation of Eq. (WK40) and the definitions of
ηKK ′ and gKK ′ . The same relation was adopted in AA.

The origin of this me ↔ �KK ′ and gKK ′ (z) ↔ ηKK ′ (z) re-
lation is the explicit one-band Hamiltonian, from which the
Schrödinger equation for eight-band �k · �p would be very dif-
ferent. Thus a lot of additional mixing terms would appear,
which most probably prohibit the crucial χ (ω) versus ξ (z/z′)
separation anyway. There is no direct way to address this
problem and even if one retains the relation of Eq. (F28) as-is,
it is not obvious is it better to use the E�,m′ − E�,n′ (as in
AA) or En̂

k′
‖,m′ − En̂

k′
‖,n′ (including the dependence of energy on

�k‖) in place of �KK ′ . For this reason, we decided to use two
versions of the relation as approximations while checking the
difference between them as a rough estimate of error, with
�KK ′ → E in Eq. (26).

Please also note that the relevant me symbols present in
WK, in our work are being embedded as a part of Jz definition
for �k · �p.

APPENDIX G: THE LOW-TEMPERATURE LIMIT
OF THE EIGHT-BAND �K · �P MODEL USABILITY

It is very probable that the reader would ask why only
limited temperature ranges were shown in Fig. 2 and taken
into account in this analysis, as compared to the measured
values in Table III. In the case of T < 78 K temperatures for
all the three samples, they are out of the scope of applicability
of our eight-band �k · �p model. This is a consequence of the
�k‖ mesh we have used in both the nextnano++ and the ISB
formation model, see Secs. II B and II E, respectively.

Please note that there are four parameters describing the
mesh. First one is the number of �k‖ directions taken into
account. Thankfully, due to the symmetry of the crystal lattice
and for a system with a symmetry point in the growth z
direction, all the �k‖ variability can be described by a single
octant, let us say between the [100] and [110] directions.
However, the issue of how many orientations NO

�k‖
of �k‖ take

into account in that octant remains. The second parameter is
the maximal magnitude of the in-plane wave vector kmax

‖ taken
into account. Here, one wants to be sure that the part of the
Brillouin zone that was cut off is sufficiently far away from the
� point that it contains no meaningful contribution. The third
parameter is the mesh spacing �k‖ , defining the granularity
of the mesh. The fourth parameter is the total mesh size,

which is given by the other ones as NO
�k‖

kmax
‖

�k‖
. Please note that

the computational complexity of the model is approximately
proportional to the second power of the mesh size.

With the computational complexity in mind, we already
have taken the path of least resistance with NO

�k‖
= 2. After

verifying that the dispersions and wave functions of the [100]
and [110] are relatively the most different in the octant, while
the intermediate orientations have intermediate dispersions
and wave functions, we only took into account these two
cases. Additionally, we limited the model to 20 conduction
band subbands (10 orbitals × 2 spin orientations) and took
only the transitions between orbitals adjacent in energy into
account.13 With all this, however, the mesh as defined and
used by us is already at the limit of practical usability.

Now, what is happening in the lower temperatures will
be discussed. As T →0 the Fermi-Dirac distribution fn,�k‖ be-
comes more rigid. Consequently, the occupation differences
of adjacent orbital subbands � f

α,�k‖ change significantly over

progressively smaller �k‖ ranges. At some point, the granularity
of the mesh becomes too big to describe the dynamics of the
ISB plasmon formation and the model falls apart. We made
an estimate based of the calculated eight-band �k · �p dispersion

13If the typical energy separation of adjacent orbitals is ωn,n+1, then
the typical energy separation of next-nearest neighbors will be about
ωn,n+2 ≈ 2ωn,n+1, which means that they would only make a small,
if not totally negligible contribution, to the ISB plasmon formation.
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relation for the [100] direction of the G0490 sample, that we
model cannot be expected to work properly for T � 78 K.

In principle, the lower temperature limit Tmin of the model
could be somewhat pushed, but the difficulty with this push
raises strongly nonlinearly with lower Tmin, putting the liquid
helium range out of the question. This nonlinearity comes
from two sources: (I) the way how Fermi-Dirac function
reacts to reducing temperature, (II) the upward drift of the
Fermi level with reducing temperature. As to the second point,
in the estimate mentioned above, the Fermi level crosses the
first subband at the � point at about T = 53 K. Because now
some intersubband transitions cross the Fermi level, when
the derivative magnitude of the Fermi-Dirac function is the

biggest (in fact approaching infinity for T →0), the model
would need a minuscule �k‖ to work.

Please note that, while the measurement for G0643 was
performed with more or less equidistant temperatures, the
ones for G0490 and G0489 have one point in liquid-helium
temperature range (T = 10 K) and the next one is already
the liquid nitrogen temperature. We consider the second type
of measurement more typical, because if the measurement is
done with the use of liquid helium anyway, there seems to
be no reason not to do it in very low temperature. We had
just accepted that the scope of applicability of our model is
the liquid-nitrogen temperatures and above as opposed to the
liquid-helium temperature range.
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[3] M. Załużny and C. Nalewajko, Phys. Rev. B 59, 13043
(1999).

[4] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
(1982).

[5] Y. Todorov and C. Sirtori, Phys. Rev. B 85, 045304 (2012).
[6] G. Pegolotti, A. Vasanelli, Y. Todorov, and C. Sirtori, Phys. Rev.

B 90, 035305 (2014).
[7] Y. Todorov, Phys. Rev. B 89, 075115 (2014).
[8] Y. Todorov, Phys. Rev. B 91, 125409 (2015).
[9] Y. Todorov, L. Tosetto, A. Delteil, A. Vasanelli, C. Sirtori,

A. M. Andrews, and G. Strasser, Phys. Rev. B 86, 125314
(2012).

[10] B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C.
Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, New J. Phys.
16, 043029 (2014).

[11] R. J. Warburton, C. Gauer, A. Wixforth, J. P. Kotthaus, B. Brar,
and H. Kroemer, Phys. Rev. B 53, 7903 (1996).

[12] F. Alpeggiani and L. C. Andreani, Phys. Rev. B 90, 115311
(2014).

[13] A. Eguiluz and A. A. Maradudin, Ann. Phys. 113, 29 (1978).
[14] L. Wendler and R. Pechstedt, Phys. Status Solidi B 138, 197

(1986).
[15] L. Wendler and E. Kändler, Phys. Status Solidi B 177, 9 (1993).
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