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In cavity quantum electrodynamics, strong light–matter coupling is normally observed between a photon mode and a
discrete optically active transition. In the present work we demonstrate that strong coupling can also be achieved using
ionizing, intrinsically continuum, transitions. This leads to the appearance of novel discrete polaritonic resonances,
corresponding to dressed bound exciton states, kept together by the exchange of virtual cavity photons. We apply our
theory to the case of intersubband transitions in doped quantum wells, where Coulomb-bound excitons are absent. In
considering quantum wells with a single bound electronic subband, in which all transitions involve states in the con-
tinuum, we find that the novel bound excitons predicted by our theory are observable within present-day, realistic
parameters. Our work shows how strong light–matter coupling can be used as a novel gauge to tune both optical and
electronic properties of semiconductor heterostructures beyond those permitted by mere crystal properties.
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1. INTRODUCTION

When a single photon can be trapped in an optical resonator long
enough to undergo multiple absorption and re-emission cycles,
the coupled light–matter system is said to be in the strong cou-
pling regime. Its physics cannot then be correctly described in
terms of irreversible absorption and emission of photons; instead
it becomes necessary to consider hybrid quasiparticles, half-light
half-matter, named polaritons [1]. Many works have demon-
strated how the hybridization with matter strongly alters not only
the spectrum, but also the field profile [2–4], and the quantum
[5–8] and nonlinear [9,10] properties of the photonic resonator.
More recently, interest has also broadened toward investigating
how strong coupling can be used to modify properties of the
underlying matter degrees of freedom [11–19], including changes
in electrical [20–23] and photochemical [24–26] properties.

Notwithstanding a large and rapidly growing interest in polari-
tonic physics, until now the only transitions exploited to achieve
strong coupling were those between bound electronic states.
Bound-to-continuum ionizing transitions would in fact seem
to be, by their very nature, irreversible, as the ionized components
get separated upon photon absorption, thus not allowing for a
subsequent re-emission.

In this work we demonstrate that ionizing electronic transi-
tions can be strongly coupled to a photonic resonator, leading
to the appearance of discrete polaritonic resonances below the
ionization threshold. The electronic part of such resonances cor-
responds to bound excitons not present in the uncoupled system,
and are thus generated by the coupling with the cavity-photonic

field. In particular, these bound states do not rely on the Coulomb
attraction between electrons and holes underlying standard exci-
tons. Apart from its importance from a fundamental perspective,
this discovery opens the way to a number of practical applications,
as those novel bound states can be pathways for chemical reac-
tions, improve the efficiency of multi-photon transitions, or push
the tunability of semiconductor devices beyond that allowed by
mere electronic properties.

Most of the concepts introduced in this paper are general
enough to be broadly applied to any cavity quantum electrody-
namics platform, including atomic and molecular systems, for
which quantum electrodynamics density-functional approaches
are currently being developed [27,28]. Notwithstanding the
above, henceforth we will consider the specific case of microcavity-
embedded doped quantum wells, sketched in Fig. 1, which have
an immediate technological relevance while also allowing for a
simpler and more transparent theoretical treatment thanks to
their effective one-dimensional nature. In those systems the con-
finement along the growth (z) axis splits the conduction band
into multiple discrete bound or continuous unbound subbands.
The parabolic quasi-parallel in-plane dispersion then allows for
the excitation of resonant coherent electronic transitions with
long dephasing times. When more than one bound subband is
present, the resulting narrow optical transition has been success-
fully strongly coupled with mid-infrared and terahertz resonators
[29–31]. The resulting quasiparticles, named intersubband
polaritons, have been highlighted as a promising platform for
long-wavelength optoelectronics [32–35], with the possibility
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of tuning the doping in situ by optical or electrical means [36,37].
The role of intersubband polariton formation on the electronic
wavefunction has been investigated in the past [38], highlighting
the possibility of dramatically increasing the emission efficiency by
injecting electrons into superradiant bright states. Bound-to-
continuum transitions in doped quantum wells have also been the
object of theoretical [39] and experimental [40] investigations.

2. THEORY

In this section we will sketch the theory of the bound-to-
continuum strong coupling and the calculation of the corres-
ponding resonator-induced bound excitonic states. Detailed
derivations can be found in Supplement 1.

A. Spectrum

The problem of the coupling between a discrete resonance (in our
case the photonic mode) and a continuum (the bound-to-
continuum electronic transitions) was initially treated by Fano
in his landmark paper [41]. In such a work, the coupled eigen-
frequencies are always assumed to fall into the uncoupled
continuum, leading to the characteristic asymmetric broadened
absorption lineshape. The limit of a very narrow continuum, de-
scribing an inhomogeneously broadened discrete resonance, has
also been investigated [42,43]. Here we will instead consider the
case of a semi-infinite ionization continuum of unbound states, in
which one of the hybridized light–matter eigenmodes lies below
its lowest edge. This can happen either because the uncoupled
discrete resonance is not resonant with the continuum to start
with, or because the coupling is large enough to push a coupled
eigenmode out of the continuum.

In a planar semiconductor heterostructure, the electronic states
can be indexed by the in-plane two-dimensional momentum vector
k and by an index n, which runs over both bound and continuum
states quantized along the growth, out-of-plane axis. The field op-
erator for electrons of in-plane momentum k can thus be written as

Ψk�z� �
X
n
ϕn�z�cnk , (1)

where cnk is the fermionic annihilation operator of the nth elec-
tron level with in-plane wavevector k, frequency ωc

nk, and

envelope wavefunction ϕn�z�. The electronic single-particle spec-
trum will be characterized by one or more bound levels ωc

nk < 0,
and a series of unbound states delocalized across the bulk
ωc
nk > 0. Those states can either form a real continuum or ar-

range themselves in a set of broadened minibands, depending
on the details of the potential felt by the electrons. We will in
the following use the term continuum with the understanding that
it can cover both situations.

Collective electronic transitions between single-particle states
can be indexed by the in-plane wavevector q and the index
α ≡ �nm�, with m and n, respectively, the initial and final elec-
tronic levels. Narrowing down to the case of interest, we consider
a system in which only bound-to-continuum transitions are op-
tically active, by choosing the number of electrons N such that,
as depicted in Fig. 1(b), the Fermi energy stands between the
bottom of the last bound and first unbound subbands. A cavity
photon with in-plane wavevector q thus couples to electronic
transitions described by the dipole operators:

b†�nm�q � 1ffiffiffiffiffi
N

p
X
k

c†nk�qcmk : (2)

In the dilute excitation regime, in which the number of excita-
tions in the system is much smaller thanN , those operators satisfy
bosonic commutation relations [32,44,45]:

�bαq, b†βq0 � � δαβδ�q − q0�: (3)

Many-body plasmonic effects can become important at high
doping densities. The Hamiltonian describing single particle
transitions bαq, and their mutual Coulombic interaction, can then
be diagonalized through a Bogoliubov rotation, leading to a
Hamiltonian of decoupled multisubband plasmon modes pαq
[46–49]. The Bogoliubov rotation can then be inverted, writing
the single particle transition operators as linear superpositions of
the plasmonic ones:

�b†αq � bα−q� �
X
β

hαβ�p†βq � pβ−q�: (4)

By introducing a†q, the bosonic creation operator for a cavity pho-
ton of in-plane wavevector q and frequency ωa

q, the light–matter
Hamiltonian takes the form

Fig. 1. Schematic representation of the electronic structure of a quantum well of width LQW , with a single bound state below the continuum (shaded in
gray). (a) Electronic density envelope functions of the different single-particle eigenmodes, shifted by their energy. The potential profile is plotted in red,
with the first ionization energy ℏχ and the conduction band discontinuity V explicitly marked. The figure has been obtained using the parameters of the
structure described in Section 3.A. For sake of clarity, only one continuum mode in every 10 is shown, with its density multiplied by 10. (b) In-plane
dispersion of the different subbands in momentum space. The single bound state is filled with electrons (in red), up to the Fermi energy EF (dashed yellow
line). The dashed–dotted blue arrows represent a collective bound-to-continuum transition.
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H �
X
q

�
ℏωa

qa
†
qaq �

X
α

ℏωp
αp†αqpαq

�
X
α

ℏΞαq

2
�a†−q � aq��p†αq � pα−q�

�
,

where ωp
α are the frequencies of the electronic transitions dressed

by local-field effects and Ξαq is the renormalized light–matter cou-
pling. This Hamiltonian can be diagonalized in terms of bosonic
hybrid light–matter polariton operators:

d sq � xsqaq � zsqa
†
−q �

X
α

� ysαqpαq � wsαqp†α−q �: (5)

When the index s runs over solutions that are in the continuum,
the system is equivalent to that described by Fano, and we will not
explicitly discuss its solution here. We consider instead solutions
with frequency ωd

sq < χ, where we define the frequency of first
ionization χ as the lowest ωp

α belonging to a continuum part
of the spectrum [see Fig. 1(a)]. The discrete nature of those po-
laritonic modes implies their matter component is a bound exci-
tonic state generated by the coupling with the photonic field. This
novel mechanism of binding is to be contrasted to the usual
Coulomb electron–hole interaction that binds standard excitons.
The eigenvalue ωd

sq is shown (in this case) to obey the
eigenequation (see Supplement 1)

ωa
q

ωa2
q − ωd2

sq

X
α

jΞαqj2ωp
α

ωp2
α − ωd2

sq

� 1. (6)

The existence of a solution satisfying Eq. (6) can be easily proved
if the photonic mode lies below the frequency of first ionization
(ωa

q < χ). In the opposite case (ωa
q > χ), however, one needs to

solve the integral equation to verify whether the interaction is
strong enough to push the hybrid light–matter mode out of
the continuum.

B. Excitonic States

Assuming for the moment that Eq. (6) has at least a solution
ωd
sq < χ, we will now study its properties. The operator in

Eq. (5) describes the normal mode of the system as a superposi-
tion of photonic and matter excitations but, notwithstanding the
fact all electronic transitions are in the continuum, and thus all
the available final states unbound, there is not enough energy to
promote an electron to an unbound state. The particular linear
superposition of bound-to-continuum transitions specified by the
ysαq and wsαq coefficients in Eq. (5) thus has to describe a bound
excitonic state not present in the uncoupled Hamiltonian. To
visualize such a state we can define the electron density,

N �z� �
X
k

Ψ†
k�z�Ψk�z�, (7)

and calculate its difference between the ground state jGi and the
state with one excitation in an arbitrary d sq polaritonic mode:

ΔN sq�z� � hGjd sqN �z�d †
sqjGi − hGjN �z�jGi

� Psq�jψ e
sq�z�j2 − jψ g

sq�z�j2�, (8)

where, Psq is the weight of the matter component of the polari-
tonic mode, and ψ g

sq�z� and ψ e
sq�z�, built respectively only by

wavefunctions of initially full and empty electronic levels, can
be interpreted as the wavefunctions of the initial (ground) and

final (excited) states of the excitonic transition created by the
operator d †

sq.

3. RESULTS

We will now apply the previously developed theory to the case of
nQW identical doped GaAs∕AlxGa1−xAs quantum wells of width
LQW � 4 nm. The Al fraction x � 0.33 then ensures that each
quantum well will have a single electronic bound state.
Intersubband polaritons have been demonstrated in those struc-
tures, with doping levels up to N 2DEG � 3 × 1012 cm−2 [35].
Electronic bare wavefunctions are then calculated considering a
single conduction band in the effective mass approximation
and using Bastard boundary conditions for the envelope functions
[50]. These eigenfunctions are used to calculate all the electronic
parameters of Eq. (5). The resulting multi-mode Hopfield matrix
is then numerically diagonalized, leading to the determination of
the eigenfrequencies ωd

sq and of the eigenvectors in Eq. (5). Those
coefficients are then used in Eq. (8) to calculate the ground and
excited electronic densities jψ g

sq�z�j2 and jψ e
sq�z�j2, and the mat-

ter weight Psq.

A. nQW � 1

To build a good understanding of the implications of bound-to-
continuum strong coupling, we start by considering a single quan-
tum well in a wide bulk of total width T � 1 μm, aptly modeling
an ionization continuum in which the electron can escape and be
lost. The envelope functions in Fig. 1(a) have been calculated us-
ing these parameters. To get large values of the coupling with a
single quantum well, we consider the electronic transition
coupled to a subwavelength photonic resonance with an effective
cavity length Lc much smaller than the transition wavelength λ. In
particular, we fix Lc � 25 nm, which for a photonic transition
quasi-resonant to the frequency of first ionization χ, implies
λ
2Lc

≃ 125, a value that can be today achieved using various
mid-infrared architectures [51–53]. Note that specific implemen-
tations could impose further constraints on the shape of the bulk
(e.g., forcing the quantum well to be at a specific distance from
one of the boundaries), but for the sake of definiteness we will
neglect this possibility and consider the quantum well to be
placed in the center of the 1 μm bulk. A microscopic model
for the photonic resonator is instead considered for the case of
multiple quantum wells described below.

In Figs. 2–4 we show the results for cavity energies
ℏωa

q � 185, 195, and 205 meV respectively. In panel (a) of each
figure we plot the polaritonic spectrum as a function of the dop-
ing, clearly showing the ionization continuum around
ℏχ � 188.4 meV. In the case ωa

q < χ, a single discrete mode be-
low the continuum is also present for any doping. In the case of
ωa
q > χ, it is present only above a critical doping, since the cou-

pling needs to be strong enough to push a polaritonic mode out of
the continuum. In panels (b) we instead plot the normalized ex-
cited electronic density jψ e

sq�z�j2 for the lowest-lying polaritonic
state in a neighborhood of the quantum well. Since we are con-
sidering a quantum well with a single initially occupied electronic
state, the ground wavefunction ψ g

sq�z� coincides with the lowest
subband envelope function and thus depends neither on s nor on
doping. In Fig. 5(a) we plot the ground density jψ g

sq�z�j2 (blue
solid line) and the excited density jψ e

sq�z�j2 (red dashed line)
corresponding to the lowest eigenmode in Fig. 3(g) in a 40 nm
interval around the quantum well.
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We can verify that a bound exciton forms only when a discrete
polaritonic resonance below the continuum is present. The differ-
ence between the energy of first ionization and the energy of the
discrete polaritonic mode plays in this case the role of binding

energy for the exciton, being the excess energy the matter com-
ponent of the polariton needs to dissociate into the continuum.
By comparing Figs. 2–4, we can thus realize that the binding
energy depends non-trivially on both the strength of the

Fig. 2. Simulation of a single quantum well of width LQW � 4 nm in a bulk of total width T � 1 μm, with effective cavity length Lc � 25 nm and
cavity energy ℏωa

q � 185 meV, smaller than the first ionization ℏχ � 188.4 meV. (a) Polaritonic spectrum as a function of the doping. The yellow line
marks the cavity energy. (b) Colormap of the excited electron density jψ e

sq�z�j2 for the lowest lying polaritonic mode as a function of doping. Yellow
dashed lines mark the boundaries of the quantum well. (c)–(g) Plots of jψ e

sq�z�j2 for all the polaritonic modes (all the s up to the cutoff ) relative to the five
values of doping marked by dotted vertical gray lines in panels (a) and (b). The lowest lying mode represented in panel (b) is plotted in blue; all the other
modes in the continuum are instead in red, forming the thin homogeneous red band of density T −1 visible at the bottom of each panel. Note that, due to
the different scale, the node in the localized excited electronic density visible in panel (b) is not clearly resolved in panels (c)–(g).

Fig. 3. Same as in Fig. 2, but with cavity energy ℏωa
q � 195 meV, larger than the first ionization ℏχ � 188.4 meV.
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light–matter interaction and on the detuning between the cavity
mode and the edge of the continuum. At low enough temperature,
the discrete polaritonic resonance, not having enough energy to
decay in the ionization continuum, is thus expected to have a line-
width of the order of few meV, determined by non-parabolicity,
electron–phonon, and electron–electron scattering [54], as well
as by the coupling of its photonic component to extra-cavity radi-
ative modes. The predicted coupling-induced shifts are thus sizably
larger than the expected linewidths, making those resonances
spectroscopically observable and individually addressable.

To prove that bound excitonic states do not exist in the con-
tinuum below the critical density, in panels (c)–(g) of Figs. 2–4
we plot the excited electronic density jψ e

sq�z�j2 for all the polaritonic
modes, using a cutoff of 500 meV on the single electron energies.
Lines corresponding to all values of s except the lowest-lying one
are all plotted in red, and their overlap forms the uniform red band
that can be seen on the very bottom of each panel, of homogeneous
density T −1. Such homogeneous density, vanishing in the limit
T → ∞ of a true continuum, is that expected from a standard
bound-to-continuum excitation. The density of the first mode is in-
stead plotted in blue. Those results further confirm that a bound ex-
citon is present only when a discrete polaritonicmode appears. Note
that due to the different scales of panels (b) and (c)–(g) the node
of the excited density is not clearly visible in the latter.

Of course the normalized electronic densities give only partial
information on the existence and observability of resonator-
induced bound exciton states, because from Eq. (8) they are
weighted by the matter fraction Psq. In Fig. 5(b) we thus plot
Psq relative to the mode plotted in panels (b) of Figs. 2–4 as a
function of doping, for the three considered values of the cavity
energy. As expected, when the bare cavity mode is below the con-
tinuum (ℏωa

q � 185 meV, blue solid line), the discrete lowest-
lying polaritonic mode for a vanishing doping is just the bare
cavity with a vanishing matter component. In the opposite cases
(ℏωa

q � 195 meV, red dashed line, and ℏωa
q � 205 meV yellow

dashed–dotted line) the lowest mode is initially purely matter
(Psq � 1), and only when the discrete polaritonic mode appears
do we observe light–matter hybridization. In all three cases,
though, a strong hybridization is observed for experimentally
achievable values of the doping.

B. nQW � 20

Having investigated the single-quantum-well case, and demon-
strated the formation of bound excitonic resonances for suitable

Fig. 4. Same as in Fig. 2, but with cavity energy ℏωa
q � 205 meV, larger than the first ionization ℏχ � 188.4 meV.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

Fig. 5. (a) Ground (blue solid line) and excited (red dashed line) elec-
tronic densities corresponding to the lowest eigenmode in Fig. 3(g). The
shaded region corresponds to the quantum well. (b) Weight of the matter
component Psq for the lowest-lying polaritonic mode as a function of
doping for ℏωa

q � 185 meV (blue solid line), ℏωa
q � 195 meV (red

dashed line), and ℏωa
q � 205 meV (yellow dashed–dotted line).

Other parameters as in Fig. 2.
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strength of the light–matter interaction, here we will consider the
case of nQW � 20 quantum wells that couple to the TM0 mode
of a planar resonator as wide as the electron bulk. The relative
facility to achieve strong coupling in multiple-quantum-well
structures [29–31] will allow for a rapid observation of the
discrete polaritonic resonances emerging out of the continuum,
heralding the generation of resonator-induced bound excitonic
states.

We consider a sample with nQW � 20 quantum wells, sepa-
rated by barriers of 20 nm, with the same length LQW � 4 nm
used previously, and the bulk and the resonator have a total length
Lc � T � 0.5 μm. The filling factor nQWLQW∕Lc � 0.16,
which in Ref. [47] was shown to be the relevant figure of merit
to quantify the strength of the light–matter interaction, is thus the
same as in Section 3.A, allowing for a meaningful comparison.

In Fig. 6(a) we plot the eigenmodes for ℏωa
q � 195 meV.

Notwithstanding minor differences, including a larger energy
of first ionization ℏχ � 192 meV, which are to be expected given
the different structure of the continuum, we recover results in
agreement with those in Fig. 3(a), showing that discrete resonan-
ces below the continuum are observable also in multi-quantum-
well structures. In Figs. 6(b) and 6(c) we plot the excited
electronic density in the lowest-lying eigenmode, for values of
the doping N 2DEG � 0 and 3 × 1012 cm−2, respectively, marked
by arrows in Fig. 6(a). It can be observed that the electronic den-
sities for the continuous (red) and discrete (blue) modes are not as
spectacularly different as in Fig. 3. This was expected because, in a
multi-quantum-well structure, ionized electrons will still be
confined in the proximity of quantum wells, as the total space
occupied by the quantum wells is now a macroscopic fraction
of the total width of the bulk. Nevertheless, we can recognize
the same physics at play, as the collective density, although

modulated by the presence of the quantum wells, passes from
a mode of the entire structure, whose intensity is maximal at
the center, to a bound one in which the density is roughly the
same in each quantum well.

Finally, with the objective of testing the accuracy of our
quantum theory and to provide an experimentally accessible
observable, we calculated the reflectivity of the same structure

Fig. 6. Simulation of nQW � 20 quantum wells of width LQW � 4 nm in a bulk of total width T � 0.5 μm embedded in a planar microcavity. The
TM0 mode of the microcavity is chosen to have energy ℏωa

q � 195 meV, larger than the first ionization energy ℏχ � 192 meV. (a) Polaritonic spectrum
as a function of the doping. The yellow line marks the cavity energy. (b), (c) Plots of the excited electron density jψ e

sq�z�j2 for the lowest-lying polaritonic
mode, for values of doping equal, respectively, to N 2DEG � 0 and 3 × 1016 cm−2, marked by arrows in panel (a). Shaded regions correspond to the
locations of the quantum wells.

Fig. 7. (a) Reflectivity map for the same structure studied in Fig. 6,
calculated considering an electronic linewidth of 4 meV. The horizontal
dashed–dotted red line marks the first ionization energy. The solid black
and dashed white lines mark instead the dispersion of the lowest polariton
mode obtained using the Hopfield approach, respectively without and
with the effective medium approximation. (b) A vertical cut of panel
(a) for N 2DEG � 3 × 1012 cm−2.
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coupled to a planar metallic resonator, using a classical transfer
matrix approach in the effective medium approximation includ-
ing local field effects [39,55] and considering an electronic line-
width of 4 meV. Results are shown in Fig. 7, which replicates
acceptably well the modal spectrum of Fig. 6(a). Superimposed on
the reflectivity map we plot, with a solid black line, the lowest-
lying polariton from Fig. 6(a). The small difference between the
Hopfield and transfer matrix approaches, visible in the increased
redshift of the reflectivity dip corresponding to the discrete polar-
iton mode in the transfer matrix results, is due to the use of an
effective medium approximation. We verified the origin of such a
discrepancy by implementing the same approximation in the
Hopfield model, as described in Ref. [47] and explained in
Supplement 1, leading to the dashed white line, which instead
correctly follows the reflectance dip up to high levels of doping.

4. CONCLUSIONS

In this work we demonstrated that an ionizing electronic
transition can be strongly coupled to a photonic resonator.
Spectroscopically this strong coupling manifests itself with the
appearance of a discrete optically active resonance below the ion-
ization threshold. Electronically such a discrete resonance corre-
sponds to the generation of bound excitonic states. In contrast to
the Coulomb interaction responsible for electron–hole binding in
usual excitons, the bound state anticipated in this work relies
on a novel mechanism due to the coupling with the cavity-
photonic field.

The natural next question then is how the existence of these
states can be directly probed. From the optical side, the width and
the shape of the resonance bears the typical signatures of locali-
zation. For instance, the absorption of a bound-to-continuum
transition has a large and asymmetric shape, while a bound-
to-bound transition is narrower (typically below 10% at room
temperature) and Lorentzian shaped (see, for example, Ref. [40]).
However, a truly direct way to prove the electronic localization
effect would require electrical measurements. One possibility is
to use scanning tunnel microscopy. An interesting alternative that
can open up vaster perspectives in the long term is to develop
quantum-well (QWIP) or quantum cascade (QCD) intersubband
detectors operating in strong coupling. Such devices rely on po-
laritonic excitations tunneling out into electronic states: the study
of the transport in such devices can directly prove an electronic
localization effect.

Our results can find direct applications in the physics and
technology of intersubband transitions in doped quantum wells,
where the potential of exploiting bound-to-continuum transitions
[56,57] and of cavity-induced modifications of electronic states
[38] were already recognized. More broadly, this investigation,
which could be extended to other cavity quantum electrodynam-
ics systems in both solid-state and atomic physics, demonstrates a
novel way strong coupling can be exploited to influence the prop-
erties of materials coupled to light, with potential impact on fields
ranging from chemistry to material science.
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